152 research outputs found

    Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri

    Get PDF
    We present a genome-scale metabolic model for the archaeal methanogen Methanosarcina barkeri. We characterize the metabolic network and compare it to reconstructions from the prokaryotic, eukaryotic and archaeal domains. Using the model in conjunction with constraint-based methods, we simulate the metabolic fluxes and resulting phenotypes induced by different environmental and genetic conditions. This represents the first large-scale simulation of either a methanogen or an archaeal species. Model predictions are validated by comparison to experimental growth measurements and phenotypes of M. barkeri on different substrates. The predicted growth phenotypes for wild type and mutants of the methanogenic pathway have a high level of agreement with experimental findings. We further examine the efficiency of the energy-conserving reactions in the methanogenic pathway, specifically the Ech hydrogenase reaction, and determine a stoichiometry for the nitrogenase reaction. This work demonstrates that a reconstructed metabolic network can serve as an analysis platform to predict cellular phenotypes, characterize methanogenic growth, improve the genome annotation and further uncover the metabolic characteristics of methanogenesis

    Molecular Evolution of Aminoacyl tRNA Synthetase Proteins in the Early History of Life

    Get PDF
    Aminoacyl-tRNA synthetases (aaRS) consist of several families of functionally conserved proteins essential for translation and protein synthesis. Like nearly all components of the translation machinery, most aaRS families are universally distributed across cellular life, being inherited from the time of the Last Universal Common Ancestor (LUCA). However, unlike the rest of the translation machinery, aaRS have undergone numerous ancient horizontal gene transfers, with several independent events detected between domains, and some possibly involving lineages diverging before the time of LUCA. These transfers reveal the complexity of molecular evolution at this early time, and the chimeric nature of genomes within cells that gave rise to the major domains. Additionally, given the role of these protein families in defining the amino acids used for protein synthesis, sequence reconstruction of their pre-LUCA ancestors can reveal the evolutionary processes at work in the origin of the genetic code. In particular, sequence reconstructions of the paralog ancestors of isoleucyl- and valyl- RS provide strong empirical evidence that at least for this divergence, the genetic code did not co-evolve with the aaRSs; rather, both amino acids were already part of the genetic code before their cognate aaRSs diverged from their common ancestor. The implications of this observation for the early evolution of RNA-directed protein biosynthesis are discussed.National Science Foundation (U.S.) (Grant DEB 0830024)National Science Foundation (U.S.) (Grant DEB 0936234)United States. National Aeronautics and Space Administration (NASA Postdoctoral Fellowship

    Effects of using coding potential, sequence conservation and mRNA structure conservation for predicting pyrroly-sine containing genes

    Get PDF
    BACKGROUND: Pyrrolysine (the 22nd amino acid) is in certain organisms and under certain circumstances encoded by the amber stop codon, UAG. The circumstances driving pyrrolysine translation are not well understood. The involvement of a predicted mRNA structure in the region downstream UAG has been suggested, but the structure does not seem to be present in all pyrrolysine incorporating genes. RESULTS: We propose a strategy to predict pyrrolysine encoding genes in genomes of archaea and bacteria. We cluster open reading frames interrupted by the amber codon based on sequence similarity. We rank these clusters according to several features that may influence pyrrolysine translation. The ranking effects of different features are assessed and we propose a weighted combination of these features which best explains the currently known pyrrolysine incorporating genes. We devote special attention to the effect of structural conservation and provide further substantiation to support that structural conservation may be influential – but is not a necessary factor. Finally, from the weighted ranking, we identify a number of potentially pyrrolysine incorporating genes. CONCLUSIONS: We propose a method for prediction of pyrrolysine incorporating genes in genomes of bacteria and archaea leading to insights about the factors driving pyrrolysine translation and identification of new gene candidates. The method predicts known conserved genes with high recall and predicts several other promising candidates for experimental verification. The method is implemented as a computational pipeline which is available on request

    The deep-subsurface sulfate reducer Desulfotomaculum kuznetsovii employs two methanol-degrading pathways

    Get PDF
    Methanol is generally metabolized through a pathway initiated by a cobalamine-containing methanol methyltransferase by anaerobic methylotrophs (such as methanogens and acetogens), or through oxidation to formaldehyde using a methanol dehydrogenase by aerobes. Methanol is an important substrate in deep-subsurface environments, where thermophilic sulfate-reducing bacteria of the genus Desulfotomaculum have key roles. Here, we study the methanol metabolism of Desulfotomaculum kuznetsovii strain 17T, isolated from a 3000-m deep geothermal water reservoir. We use proteomics to analyze cells grown with methanol and sulfate in the presence and absence of cobalt and vitamin B12. The results indicate the presence of two methanol-degrading pathways in D. kuznetsovii, a cobalt-dependent methanol methyltransferase and a cobalt-independent methanol dehydrogenase, which is further confirmed by stable isotope fractionation. This is the first report of a microorganism utilizing two distinct methanol conversion pathways. We hypothesize that this gives D. kuznetsovii a competitive advantage in its natural environment.Research was funded by grants of the Division of Chemical Sciences (CW-TOP 700.55.343) and Earth and Life Sciences (ALW 819.02.014) of The Netherlands Organisation for Scientific Research (NWO), the European Research Council (ERC grant 323009), and the Gravitation grant (024.002.002) of the Netherlands Ministry of Education, Culture and Scienceinfo:eu-repo/semantics/publishedVersio

    Ancient horizontal gene transfer and the last common ancestors

    Get PDF
    Background The genomic history of prokaryotic organismal lineages is marked by extensive horizontal gene transfer (HGT) between groups of organisms at all taxonomic levels. These HGT events have played an essential role in the origin and distribution of biological innovations. Analyses of ancient gene families show that HGT existed in the distant past, even at the time of the organismal last universal common ancestor (LUCA). Most gene transfers originated in lineages that have since gone extinct. Therefore, one cannot assume that the last common ancestors of each gene were all present in the same cell representing the cellular ancestor of all extant life. Results Organisms existing as part of a diverse ecosystem at the time of LUCA likely shared genetic material between lineages. If these other lineages persisted for some time, HGT with the descendants of LUCA could have continued into the bacterial and archaeal lineages. Phylogenetic analyses of aminoacyl-tRNA synthetase protein families support the hypothesis that the molecular common ancestors of the most ancient gene families did not all coincide in space and time. This is most apparent in the evolutionary histories of seryl-tRNA synthetase and threonyl-tRNA synthetase protein families, each containing highly divergent “rare” forms, as well as the sparse phylogenetic distributions of pyrrolysyl-tRNA synthetase, and the bacterial heterodimeric form of glycyl-tRNA synthetase. These topologies and phyletic distributions are consistent with horizontal transfers from ancient, likely extinct branches of the tree of life. Conclusions Of all the organisms that may have existed at the time of LUCA, by definition only one lineage is survived by known progeny; however, this lineage retains a genomic record of heterogeneous genetic origins. The evolutionary histories of aminoacyl-tRNA synthetases (aaRS) are especially informative in detecting this signal, as they perform primordial biological functions, have undergone several ancient HGT events, and contain many sites with low substitution rates allowing deep phylogenetic reconstruction. We conclude that some aaRS families contain groups that diverge before LUCA. We propose that these ancient gene variants be described by the term “hypnologs”, reflecting their ancient, reticulate origin from a time in life history that has been all but erased”.National Science Foundation (U.S.) (Grant DEB 0830024)Exobiology Program (U.S.) (Grant NNX10AR85G)United States. National Aeronautics and Space Administration (Postdoctoral Program

    Activation of Methanogenesis in Arid Biological Soil Crusts Despite the Presence of Oxygen

    Get PDF
    Methanogenesis is traditionally thought to occur only in highly reduced, anoxic environments. Wetland and rice field soils are well known sources for atmospheric methane, while aerated soils are considered sinks. Although methanogens have been detected in low numbers in some aerated, and even in desert soils, it remains unclear whether they are active under natural oxic conditions, such as in biological soil crusts (BSCs) of arid regions. To answer this question we carried out a factorial experiment using microcosms under simulated natural conditions. The BSC on top of an arid soil was incubated under moist conditions in all possible combinations of flooding and drainage, light and dark, air and nitrogen headspace. In the light, oxygen was produced by photosynthesis. Methane production was detected in all microcosms, but rates were much lower when oxygen was present. In addition, the δ13C of the methane differed between the oxic/oxygenic and anoxic microcosms. While under anoxic conditions methane was mainly produced from acetate, it was almost entirely produced from H2/CO2 under oxic/oxygenic conditions. Only two genera of methanogens were identified in the BSC-Methanosarcina and Methanocella; their abundance and activity in transcribing the mcrA gene (coding for methyl-CoM reductase) was higher under anoxic than oxic/oxygenic conditions, respectively. Both methanogens also actively transcribed the oxygen detoxifying gene catalase. Since methanotrophs were not detectable in the BSC, all the methane produced was released into the atmosphere. Our findings point to a formerly unknown participation of desert soils in the global methane cycle

    Economía y sostenibilidad azul

    Get PDF
    Línea de InvestigaciónLa economía depende del consumo de habitantes y la producción de las empresas, no obstante, existen factores ambientales y culturales que ponen en riesgo la sostenibilidad de los proyectos y de la vida en el planeta, la economía azul presenta metodologías innovadoras capaces de generar un entorno de bienestar y propone la transformación de problemas en soluciones usando como insumos.1. Resumen 2. Palabras Clave 3. Introducción 4. Desarrollo 5. Conclusiones 6. Referencias bibliográficasEspecializaciónEspecialista en Análisis y Administración Financier

    Electromagnetic influences in a hydrogen-oxygen rocket combustor.

    No full text

    Effect of rocket engine vibration on an air- core superconducting magnet

    No full text
    corecore