224 research outputs found

    A Memory Bandwidth-Efficient Hybrid Radix Sort on GPUs

    Full text link
    Sorting is at the core of many database operations, such as index creation, sort-merge joins, and user-requested output sorting. As GPUs are emerging as a promising platform to accelerate various operations, sorting on GPUs becomes a viable endeavour. Over the past few years, several improvements have been proposed for sorting on GPUs, leading to the first radix sort implementations that achieve a sorting rate of over one billion 32-bit keys per second. Yet, state-of-the-art approaches are heavily memory bandwidth-bound, as they require substantially more memory transfers than their CPU-based counterparts. Our work proposes a novel approach that almost halves the amount of memory transfers and, therefore, considerably lifts the memory bandwidth limitation. Being able to sort two gigabytes of eight-byte records in as little as 50 milliseconds, our approach achieves a 2.32-fold improvement over the state-of-the-art GPU-based radix sort for uniform distributions, sustaining a minimum speed-up of no less than a factor of 1.66 for skewed distributions. To address inputs that either do not reside on the GPU or exceed the available device memory, we build on our efficient GPU sorting approach with a pipelined heterogeneous sorting algorithm that mitigates the overhead associated with PCIe data transfers. Comparing the end-to-end sorting performance to the state-of-the-art CPU-based radix sort running 16 threads, our heterogeneous approach achieves a 2.06-fold and a 1.53-fold improvement for sorting 64 GB key-value pairs with a skewed and a uniform distribution, respectively.Comment: 16 pages, accepted at SIGMOD 201

    Lake surface cooling drives littoral-pelagic exchange of dissolved gases

    Get PDF
    The extent of littoral influence on lake gas dynamics remains debated in the aquatic science community due to the lack of direct quantification of lateral gas transport. The prevalent assumption of diffusive horizontal transport in gas budgets fails to explain anomalies observed in pelagic gas concentrations. Here, we demonstrate through high-frequency measurements in a eutrophic lake that daily convective horizontal circulation generates littoral-pelagic advective gas fluxes one order of magnitude larger than typical horizontal fluxes used in gas budgets. These lateral fluxes are sufficient to redistribute gases at the basin-scale and generate concentration anomalies reported in other lakes. Our observations also contrast the hypothesis of pure, nocturnal littoral-to-pelagic exchange by showing that convective circulation transports gases such as oxygen and methane toward both the pelagic and littoral zones during the daytime. This study challenges the traditional pelagic-centered models of aquatic systems by showing that convective circulation represents a fundamental lateral transport mechanism to be integrated into gas budgets. Cooling-induced horizontal circulation redistributes gases daily between littoral and pelagic lake waters under calm conditions

    Gonadal Malformations in Whitefish from Lake Thun: Defining the Case and Evaluating the Role of EDCs

    Get PDF
    The objectives of this project were to evaluate i) whether the gonad alterations of whitefish (Coregonus lavaretus spp.) in Lake Thun represent abnormal morphological variations specific to this lake, and, if so, ii) whether the malformations are related to chemical exposure, in particular to exposure to endocrine-disrupting compounds (EDCs). Large-scale monitoring data revealed that, although whitefish in other lakes display some background variation of gonad morphology, the situation in Lake Thun, is unique because of the significantly higher prevalence of gonad malformations. The abnormal variations of whitefish gonad morphology include aplasias, compartmentations, fusions, and intersex. In the search for the factor(s) causing the gonad malformations, coregonids were exposed from fertilization up to maturity to Lake Thun water and plankton or to contaminants possibly being present in the lake, including trinitrotoluenes, and naphtalene sulfonates. Since these experiments are still ongoing, a conclusive answer cannot be given yet, but initial observations point to a role of the lake plankton. The possible presence of EDCs in Lake Thun was assessed using bioanalytics and biomarkers. The bioanalytical studies found estrogenic activities in concentrated plankton extracts of Lake Thun, however, estrogenic activities occurred also in plankton extracts of reference lakes. Bioassay-directed fractionation of the plankton samples points to degradation products of natural substances as a cause of the estrogenic activity. Examination of Lake Thun whitefish for EDC biomarkers such as vitellogenin, sex steroid levels or intersex frequency yielded no indications of exposure to EDCs, neither in fish with normal nor in fish with abnormal gonad morphology. Long-term laboratory exposure of developing coregonids to the prototype estrogenic compound, 17?-estradiol, resulted in an increased frequency of intersex gonads, but did not induce the other gonad malformations typical for Lake Thun coregonids. In summing up, the currently available evidence does not support an EDC or chemical etiology of the gonad malformations, however, this preliminary conclusion needs to be substantiated in the ongoing investigations. The project also highlights the need for more detailed knowledge of natural variation in wildlife populations to be able to recognize anthropogenically caused variation

    Improved red color with cholesteric liquid crystals in Bragg reflection mode

    Get PDF
    The helical pitch of the cholesteric liquid crystal (CLC) can be adjusted to reflect the colors red, green, and blue. Additive mixing of these colors in displays results in multicolor images and it is easy to use pure primary blue and green colors, but the red color is in general very unsaturated. We show by simulations that this poor red color performance is due to reflection sidebands on the smaller wavelength side of the normal red Bragg reflection band. We discuss five approaches to improve the red color performance, namely, two types of spectral filtering (dyes or filters), a very low birefringence CLC, a gradient in the birefringence of the CLC, and the use of a bluish reflector. The two methods of spectral filtering are also experimentally tested. © 2002 Society of Photo-Optical Instrumentation Engineers

    Methanotropic microbial communities associated with bubble plumes above gas seeps in the Black Sea

    Get PDF
    Bubbles evolving from active gas seeps can be traced by hydroacoustic imaging up to 1000 m high in the Black Sea water column. Although methane concentrations are not distinguishable between the water column above the deep seep and reference sites, atmospheric noble gas measurements clearly show the constant input of gases (mainly methane) via seepage into the Black Sea. Archaea (ANME-1, ANME-2) and methanotrophic bacteria detected with specific 16S rRNA-targeted oligonucleotide probes are related to active gas seeps in the oxic and anoxic water column. It is suggested that methane seeps have a much greater influence on the Black Sea methane budget than previously acknowledged and that ANME-1 and ANME-2 are injected via gas bubbles from the sediment into the anoxic water column mediating methane oxidation. Our results show further that only minor amounts of methane evolving from Black Sea gas seeps reach the atmosphere due to the very effective microbial barrier. Hence only major thermodynamically and/or tectonically triggered gas hydrate dissociation has the potential to induce rapid climate changes as suggested by the “clathrate gun hypothesis.

    Correlation Network Analysis for Amino Acid Identification in Soil Samples With the ORIGIN Space-Prototype Instrument

    Get PDF
    The detection of biomolecules on Solar System bodies can help us to understand how life emerged on Earth and how life may be distributed in our Solar System. However, the detection of chemical signatures of life on planets or their moons is challenging. A variety of parameters must be considered, such as a suited landing site location, geological and environmental processes favourable to life, life detection strategies, and the application of appropriate and sensitive instrumentation. In this contribution, recent results obtained using our novel laser desorption mass spectrometer ORganics INformation Gathering Instrument (ORIGIN), an instrument designed for in situ space exploration, are presented. We focus in this paper on the detection and identification of amino acid extracts from a natural permafrost sample, as well as in an analogue mixture of soils and amino acids. The resulting dataset was analysed using a correlation network analysis method. Based on mass spectrometric correlation, amino acid signatures were separated from soil signatures, identifying chemically different molecular components in complex samples. The presented analysis method represents an alternative to the typically applied spectra-by-spectra analysis for the evaluation of mass spectrometric data and, therefore, is of high interest for future application in space exploration missions

    Carbon and methane cycling in arsenic-contaminated aquifers

    Get PDF
    Geogenic arsenic (As) contamination of groundwater is a health threat to millions of people worldwide, particularly in alluvial regions of South and Southeast Asia. Mitigation measures are often hindered by high heterogeneities in As concentrations, the cause(s) of which are elusive. Here we used a comprehensive suite of stable isotope analyses and hydrogeochemical parameters to shed light on the mechanisms in a typical high-As Holocene aquifer near Hanoi where groundwater is advected to a low-As Pleistocene aquifer. Carbon isotope signatures (δ13^{13}C-CH4_{4}, δ13^{13}C-DOC, δ13^{13}C-DIC) provided evidence that fermentation, methanogenesis and methanotrophy are actively contributing to the As heterogeneity. Methanogenesis occurred concurrently where As levels are high (>200 µg/L) and DOC-enriched aquitard pore water infiltrates into the aquifer. Along the flowpath to the Holocene/Pleistocene aquifer transition, methane oxidation causes a strong shift in δ13^{13}C-CH4_{4} from -87‰ to +47‰, indicating high reactivity. These findings demonstrate a previously overlooked role of methane cycling and DOC infiltration in high-As aquifers
    corecore