15 research outputs found

    Emerging IL-12 family cytokines in the fight against fungal infections

    Get PDF
    Invasive fungal infections cause approximately 1.5 million deaths per year worldwide and are a growing threat to human health. Current anti-fungal therapies are often insufficient, therefore studies into host-pathogen interactions are critical for the development of novel therapies to improve mortality rates. Myeloid cells, such as macrophages and dendritic cells, express pattern recognition receptor (PRRs), which are important for fungal recognition. Engagement of these PRRs by fungal pathogens induces multiple cytokines, which in turn activate T effector responses. Interleukin (IL)-12 family members (IL-12p70, IL-23, IL-27 and IL-35) link innate immunity with the development of adaptive immunity and are also important for regulating T cell responses. IL-12 and IL-23 have established roles during anti-fungal immunity, whereas emerging roles for IL-27 and IL-35 have recently been reported. Here, we discuss the IL-12 family, focusing on IL-27 and IL-35 during anti-fungal immune responses to pathogens such as Candida and Aspergillus

    Enzymatic Mechanisms Involved in Evasion of Fungi to the Oxidative Stress: Focus on Scedosporium apiospermum

    Get PDF
    The airways of patients with cystic fibrosis (CF) are frequently colonized by various filamentous fungi, mainly Aspergillus fumigatus and Scedosporium species. To establish within the respiratory tract and cause an infection, these opportunistic fungi express pathogenic factors allowing adherence to the host tissues, uptake of extracellular iron, or evasion to the host immune response. During the colonization process, inhaled conidia and the subsequent hyphae are exposed to reactive oxygen species (ROS) and reactive nitrogen species (RNS) released by phagocytic cells, which cause in the fungal cells an oxidative stress and a nitrosative stress, respectively. To cope with these constraints, fungal pathogens have developed various mechanisms that protect the fungus against ROS and RNS, including enzymatic antioxidant systems. In this review, we summarize the different works performed on ROS- and RNS-detoxifying enzymes in fungi commonly encountered in the airways of CF patients and highlight their role in pathogenesis of the airway colonization or respiratory infections. The potential of these enzymes as serodiagnostic tools is also emphasized. In addition, taking advantage of the recent availability of the whole genome sequence of S. apiospermum, we identified the various genes encoding ROS- and RNS-detoxifying enzymes, which pave the way for future investigations on the role of these enzymes in pathogenesis of these emerging species since they may constitute new therapeutics targets
    corecore