22 research outputs found

    Antimicrobials: a global alliance for optimizing their rational use in intra-abdominal infections (AGORA)

    Get PDF
    Intra-abdominal infections (IAI) are an important cause of morbidity and are frequently associated with poor prognosis, particularly in high-risk patients. The cornerstones in the management of complicated IAIs are timely effective source control with appropriate antimicrobial therapy. Empiric antimicrobial therapy is important in the management of intra-abdominal infections and must be broad enough to cover all likely organisms because inappropriate initial antimicrobial therapy is associated with poor patient outcomes and the development of bacterial resistance. The overuse of antimicrobials is widely accepted as a major driver of some emerging infections (such as C. difficile), the selection of resistant pathogens in individual patients, and for the continued development of antimicrobial resistance globally. The growing emergence of multi-drug resistant organisms and the limited development of new agents available to counteract them have caused an impending crisis with alarming implications, especially with regards to Gram-negative bacteria. An international task force from 79 different countries has joined this project by sharing a document on the rational use of antimicrobials for patients with IAIs. The project has been termed AGORA (Antimicrobials: A Global Alliance for Optimizing their Rational Use in Intra-Abdominal Infections). The authors hope that AGORA, involving many of the world's leading experts, can actively raise awareness in health workers and can improve prescribing behavior in treating IAIs

    The Global Alliance for Infections in Surgery : defining a model for antimicrobial stewardship-results from an international cross-sectional survey

    Get PDF
    Background: Antimicrobial Stewardship Programs (ASPs) have been promoted to optimize antimicrobial usage and patient outcomes, and to reduce the emergence of antimicrobial-resistant organisms. However, the best strategies for an ASP are not definitively established and are likely to vary based on local culture, policy, and routine clinical practice, and probably limited resources in middle-income countries. The aim of this study is to evaluate structures and resources of antimicrobial stewardship teams (ASTs) in surgical departments from different regions of the world. Methods: A cross-sectional web-based survey was conducted in 2016 on 173 physicians who participated in the AGORA (Antimicrobials: A Global Alliance for Optimizing their Rational Use in Intra-Abdominal Infections) project and on 658 international experts in the fields of ASPs, infection control, and infections in surgery. Results: The response rate was 19.4%. One hundred fifty-six (98.7%) participants stated their hospital had a multidisciplinary AST. The median number of physicians working inside the team was five [interquartile range 4-6]. An infectious disease specialist, a microbiologist and an infection control specialist were, respectively, present in 80.1, 76.3, and 67.9% of the ASTs. A surgeon was a component in 59.0% of cases and was significantly more likely to be present in university hospitals (89.5%, p <0.05) compared to community teaching (83.3%) and community hospitals (66.7%). Protocols for pre-operative prophylaxis and for antimicrobial treatment of surgical infections were respectively implemented in 96.2 and 82.3% of the hospitals. The majority of the surgical departments implemented both persuasive and restrictive interventions (72.8%). The most common types of interventions in surgical departments were dissemination of educational materials (62.5%), expert approval (61.0%), audit and feedback (55.1%), educational outreach (53.7%), and compulsory order forms (51.5%). Conclusion: The survey showed a heterogeneous organization of ASPs worldwide, demonstrating the necessity of a multidisciplinary and collaborative approach in the battle against antimicrobial resistance in surgical infections, and the importance of educational efforts towards this goal.Peer reviewe

    Antimicrobials: a global alliance for optimizing their rational use in intra-abdominal infections (AGORA)

    Full text link

    Synthesis, crystallographic characterization, molecular docking and biological activity of isoquinoline derivatives

    Get PDF
    Abstract The main objective of this work was to synthesize novel compounds with a benzo[de][1,2,4]triazolo[5,1-a]isoquinoline scaffold by employing (dioxo-benzo[de]isoquinolin-2-yl) thiourea as a building block. Molecular docking was conducted in the COX-2 active site to predict the plausible binding mode and rationalize the structure–activity relationship of the synthesized compounds. The structures of the synthesized compounds were confirmed by HREI-MS, and NMR spectra along with X-ray diffraction were collected for products 1 and 5. Thereafter, anti-inflammatory effect of molecules 1–20 was evaluated in vivo using carrageenan-induced paw edema method, revealing significant inhibition potency in albino rats with an activity comparable to that of the standard drugs indomethacin. Compounds 8, 9, 15 and 16 showed the highest anti-inflammatory activity. However, thermal sensitivity-hot plat test, a radiological examination and motor coordination assessment were performed to test the activity against rheumatoid arthritis. The obtained results indicate promising anti-arthritic activity for compounds 9 and 15 as significant reduction of the serum level of interleukin-1ÎČ [IL-1ÎČ], cyclooxygenase-2 [COX-2] and prostaglandin E2 [PGE2] was observed in CFA rats
    corecore