80 research outputs found
OGLE-2011-BLG-0265Lb: A Jovian Microlensing Planet Orbiting an M Dwarf
We report the discovery of a Jupiter-mass planet orbiting an M-dwarf star that gave rise to the microlensing
event OGLE-2011-BLG-0265. Such a system is very rare among known planetary systems and thus the
discovery is important for theoretical studies of planetary formation and evolution. High-cadence temporal
coverage of the planetary signal, combined with extended observations throughout the event, allows us to
accurately model the observed light curve. However, the final microlensing solution remains degenerate,
yielding two possible configurations of the planet and the host star. In the case of the preferred solution, the
mass of the planet is Mp = 0.9 0.3 MJ, and the planet is orbiting a star with a mass M = 0.22 0.06 M.
The second possible configuration (2σ away) consists of a planet with Mp = 0.6 0.3 MJ and host star with
M = 0.14 0.06 M. The system is located in the Galactic disk 3–4 kpc toward the Galactic bulge. In both
cases, with an orbit size of 1.5–2.0 AU, the planet is a “cold Jupiter”—located well beyond the “snow line” of
the host star. Currently available data make the secure selection of the correct solution difficult, but there are
prospects for lifting the degeneracy with additional follow-up observations in the future, when the lens and
source star separate
Evidence of radius inflation in radiative GCM models of WASP-76b due to the advection of potential temperature
Understanding the discrepancy between the radii of observed hot Jupiters and standard ‘radiative-convective’ models remains a hotly debated topic in the exoplanet community. One mechanism which has been proposed to bridge this gap, and which has recently come under scrutiny, is the vertical advection of potential temperature from the irradiated outer atmosphere deep into the interior, heating the deep unirradiated atmosphere, warming the internal adiabat, and resulting in radius inflation. Specifically, a recent study which explored the atmosphere of WASP-76b using a 3D non-grey GCM suggested that their models lacked radius inflation, and hence any vertical enthalpy advection. Here we perform additional analysis of these, and related models, focusing on an explicit analysis of vertical enthalpy transport and the resulting heating of the deep atmosphere compared with 1D models. Our results indicate that, after any evolution linked with initialization, all the WASP-76b models considered here exhibit significant vertical enthalpy transport, heating the deep atmosphere significantly when compared with standard 1D models. Furthermore, comparison of a long time-scale (and hence near steady-state) model with a Jupiter-like internal-structure model suggests not only strong radius-inflation, but also that the model radius, 1.98 RJ, may be comparable with observations (1.83 ± 0.06 RJ). We thus conclude that the vertical advection of potential temperature alone is enough to explain the radius inflation of WASP-76b, and potentially other irradiated gas giants, albeit with the proviso that the exact strength of the vertical advection remains sensitive to model parameters, such as the inclusion of deep atmospheric drag
OGLE-2018-BLG-0022: A Nearby M-dwarf Binary
We report observations of the binary microlensing event OGLE-2018-BLG-0022, provided by the Robotic Observations of Microlensing Events (ROME)/Reactive Event Assessment (REA) Survey, which indicate that the lens is a low-mass binary star consisting of M3 (0.375 ± 0.020 M⊙) and M7 (0.098 ± 0.005 M⊙) components. The lens is unusually close, at 0.998 ± 0.047 kpc, compared with the majority of microlensing events, and despite its intrinsically low luminosity, it is likely that adaptive optics observations in the near future will be able to provide an independent confirmation of the lens masses
Larger and faster: revised properties and a shorter orbital period for the WASP-57 planetary system from a pro-am collaboration
Transits in the WASP-57 planetary system have been found to occur half an hour earlier than expected. We present 10 transit light curves from amateur telescopes, on which this discovery was based, 13 transit light curves from professional facilities which confirm and refine this finding, and high-resolution imaging which show no evidence for nearby companions. We use these data to determine a new and precise orbital ephemeris, and measure the physical properties of the system. Our revised orbital period is 4.5 s shorter than found from the discovery data alone, which explains the early occurrence of the transits. We also find both the star and planet to be larger and less massive than previously thought. The measured mass and radius of the planet are now consistent with theoretical models of gas giants containing no heavy-element core, as expected for the subsolar metallicity of the host star. Two transits were observed simultaneously in four passbands. We use the resulting light curves to measure the planet’s radius as a function of wavelength, finding that our data are sufficient in principle but not in practise to constrain its atmospheric properties. We conclude with a discussion of the current and future status of transmission photometry studies for probing the atmospheres of gas-giant transiting planets
The Spitzer Microlensing Program As A Probe For Globular Cluster Planets: Analysis Of Ogle-2015-BLG-0448
The microlensing event OGLE-2015-BLG-0448 was observed by Spitzer and lay within the tidal radius of the globular cluster NGC 6558. The event had moderate magnification and was intensively observed, hence it had the potential to probe the distribution of planets in globular clusters. We measure the proper motion of NGC 6558 () as well as the source and show that the lens is not a cluster member. Even though this particular event does not probe the distribution of planets in globular clusters, other potential cluster lens events can be verified using our methodology. Additionally, we find that microlens parallax measured using Optical Gravitational Lens Experiment (OGLE) photometry is consistent with the value found based on the light curve displacement between the Earth and Spitzer
Campaign 9 of the K2 Mission: Observational Parameters, Scientific Drivers, and Community Involvement for a Simultaneous Space- and Ground-based Microlensing Survey
K2's Campaign 9 (K2C9) will conduct a ~3.7 deg2 survey toward the Galactic bulge from 2016 April 22 through July 2 that will leverage the spatial separation between K2 and the Earth to facilitate measurement of the microlens parallax for microlensing events. These will include several that are planetary in nature as well as many short-timescale microlensing events, which are potentially indicative of free-floating planets (FFPs). These satellite parallax measurements will in turn allow for the direct measurement of the masses of and distances to the lensing systems. In this article we provide an overview of the K2C9 space- and ground-based microlensing survey. Specifically, we detail the demographic questions that can be addressed by this program, including the frequency of FFPs and the Galactic distribution of exoplanets, the observational parameters of K2C9, and the array of resources dedicated to concurrent observations. Finally, we outline the avenues through which the larger community can become involved, and generally encourage participation in K2C9, which constitutes an important pathfinding mission and community exercise in anticipation of WFIRST
- …