765 research outputs found

    Non-linear aeroelastic behavior of large horizontal-axis wind turbines:A multibody system approach

    Get PDF
    In this paper, we present the development of a rigid-flexible multibody model which, coupled with an existing aerodynamic model, is used to numerically simulate the non-linear aeroelastic behavior of large horizontal-axis wind turbines. The model is rather general, different configurations could be easily simulated though it is primarily intended to be used as a research tool to investigate influences of different dynamic aspects. It includes: i) a supporting tower; ii) a nacelle which contains the electricity generator, the power electronics and the control systems; iii) a hub, where the blades are fixed, connected to the generator rotating shaft; and, iv) three blades which extract energy from the airstream. The blades are considered flexible, and their equations of motion are discretized in space domain by using beam finite elements capable of taking into account the non-linearities coming from the kinematics. The tower is also considered flexible, but its equations of motion are discretized by using the method of assumed-modes. The nacelle and hub are considered rigid, and their equations of motion take into account the effects of the kinematic non-linearities. Due to the system complexity, the tower, nacelle and hub are modeled as a single kinematic chain and each blade is modeled separately. Constraint equations are used to connect the blades to the hub. The resulting governing equations are differential-algebraic, and these are numerically and interactively solved in the time domain by using a fourth order predictor-corrector scheme. The results help to understand the wind speed influence on: i) the rotor angular speed; ii) the after-forward and side-to-side displacements of the tower; and, iii) the flap- and edge-wise displacements of the blades. © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.Fil: Gebhardt, Cristian Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Departamento de Estructuras; ArgentinaFil: Preidikman, Sergio. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; ArgentinaFil: M. H. Jørgensen. Aalborg University; DinamarcaFil: Massa, Julio Cesar. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentin

    Current strategies for mobilome research

    Get PDF
    Mobile genetic elements (MGE) are pivotal for bacterial evolution and adaptation, allowing shuffling of genes even between distantly related bacterial species. The study of MGEs is biologically interesting as the mode of genetic propagation is kaleidoscopic and important, as MGEs are the main vehicles of the increasing bacterial antibiotic resistance that causes thousands of human deaths each year. The study of MGEs has previously focused on plasmids from individual isolates, but the revolution in sequencing technology has allowed the study of mobile genomic elements of entire communities using metagenomic approaches. The problem in using metagenomic sequencing for the study of MGEs is that plasmids and other mobile elements only comprise a small fraction of the total genetic content that are difficult to separate from chromosomal DNA based on sequence alone. Several different approaches have been proposed that specifically enrich plasmid DNA from community samples. Here, we review recent approaches used to study entire plasmid pools from complex environments, and point out possible future developments for and pitfalls of these approaches. Further, we discuss the use of the PacBio long-read sequencing technology for MGE discovery

    Phylogeny and expression analysis of C-reactive protein (CRP) and serum amyloid-P (SAP) like genes reveal two distinct groups in fish

    Get PDF
    This work was funded by British Society of Animal Science/Genesis Faraday to both SAM and SB Immune control of energy reallocation in fish and a BBSRC Research Experience Placements (2010).Peer reviewedPublisher PD

    Transient evolution of C-type shocks in dusty regions of varying density

    Full text link
    Outflows of young stars drive shocks into dusty, molecular regions. Most models of such shocks assume that they are steady and propagating perpendicular to the magnetic field. Real shocks often violate both of these assumptions and the media through which they propagate are inhomogeneous. We use the code employed previously to produce the first time-dependent simulations of fast-mode, oblique C-type shocks interacting with density perturbations. We include a self-consistent calculation of the thermal and ionisation balances and a fluid treatment of grains. We identify features that develop when a multifluid shock encounters a density inhomogeneity to investigate whether any part of the precursor region ever behaves in a quasi-steady fashion. If it does the shock may be modelled approximately without solving the time-dependent hydromagnetic equations. Simulations were made for initially steady oblique C-type shocks encountering density inhomogeneities. For a semi-finite inhomogeneity with a density larger than the surrounding medium, a transmitted shock evolves from being J-type to a steady C-type shock on a timescale comparable to the ion-flow time through it. A sufficiently upstream part of the precursor of an evolving J-type shock is quasi-steady. The ion-flow timescale is also relevant for the evolution of a shock moving into a region of decreasing density. The models for shocks propagating into regions in which the density increases and then decreases to its initial value cannot be entirely described in terms of the results obtained for monotonically increasing and decreasing densities. For the latter model, the long-term evolution to a C-type shock cannot be approximated by quasi-steady models.Comment: 11 pages, 9 figure

    Probing the atmosphere of the bulge G5III star OGLE-2002-BUL-069 by analysis of microlense H alpha line

    Full text link
    We discuss high-resolution, time-resolved spectra of the caustic exit of the binary microlensing event OGLE 2002-BUL-69 obtained with UVES on the VLT. The source star is a G5III giant in the Galactic Bulge. During such events, the source star is highly magnified, and a strong differential magnification around the caustic resolves its surface. Using an appropriate model stellar atmosphere generated by the NextGEN code we obtained a model light curve for the caustic exit and compared it with a dense set of photometric observations obtained by the PLANET microlensing follow up network. We further compared predicted variations in the H alpha equivalent width with those measured from our spectra. While the model and observations agree in the gross features, there are discrepancies suggesting shortcomings in the model, particularly for the H alpha line core, where we have detected amplified emission from the stellar chromosphere as the source star's trailing limb exited the caustic. This achievement became possible by the provision of the OGLE-III Early Warning System, a network of small telescopes capable of nearly-continuous round-the-clock photometric monitoring, on-line data reduction, daily near-real-time modelling in order to predict caustic crossing parameters, and a fast and efficient response of a 8m-class telescope to a ``Target-Of-Opportunity'' observation request.Comment: 4 pages Latex, 3 figures, accepted for publication to astronomy and astrophysics letter

    Pressure-induced superconductivity in Eu0.5_{0.5}Ca0.5_{0.5}Fe2_2As2_2 : FeAs-based superconductivity hidden by antiferromagnetism of Eu sublattice

    Full text link
    To clarify superconductivity in EuFe2As2 hidden by antiferromagnetism of Eu2+, we investigated a Ca-substituted sample, Eu0.5Ca0.5Fe2As2, under high pressure. For ambient pressure, the sample exhibits a spin-density-wave (SDW) transition at TSDW = 191 K and antiferromagnetic order at TN = 4 K, but no evidence of superconductivity down to 2 K. The Ca-substitution certainly weakens the antiferromagnetism. With increasing pressure, TSDW shifts to lower temperature and becomes more unclear. Above 1.27 GPa, pressure-induced superconductivity with zero resistivity is observed at around Tc = 20 K. At 2.14 GPa, Tc reaches a maximum value of 24 K and the superconducting transition becomes the sharpest. These features of emergence of the superconductivity are qualitatively similar to those observed in AFe2As2 (A = Ba, Ca).Comment: 4 pages, 4 figure
    corecore