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ABSTRACT 
 
This paper shows the development of a flexible multibody model, which coupled with an existing 
aerodynamical model, is used to numerically simulate the non-linear aeroelastic behavior of large horizontal 
axis wind turbines. The model is rather general; different configurations could be easily simulated 
and it is primarily intended to be used as a research tool to investigate influences of detailed dynamic 
effects. It includes: i) a supporting tower; ii) a nacelle which contains the electrical generator, the 
power electronics and the control systems; iii) a hub where the blades are attached and connected to 
the generator rotating shaft; and, iv) three blades which extract energy from the airstream. 
The blades are considered flexible, and their equations of motion are discretized in the space domain 
by using beam finite elements capable of taking into account the non-linearities coming from the 
kinematics. The tower is also considered flexible, but its equations of motion are discretized by using 
the method of assumed-modes. The nacelle and hub are considered rigid, and are represented by 
taking into account the effects of the kinematical non-linearities. 
Due to the system complexity, the tower, nacelle and hub are modeled as a single kinematical chain 
and each blade is modeled separately. Constraint equations are used to connect the blades to the hub. 
The governing equations are differential-algebraic since ordinary differential equations and algebraic 
constraint equations are involved, due to the presence of rigid and discretized flexible bodies and 
linkage among bodies, respectively. All the equations are solved numerically and interactively in the 
time domain by using a fourth-order predictor-corrector scheme. 
 
Key words: wind turbines, rigid-flexible multibody systems, aerodynamic loads, aeroelastic behavior. 
 
 
1. INTRODUCTION 
 
During the last two decades, due to the necessity 
to obtain clean sources of energy, the interest in 
designing wind turbines increasingly large has 
been growing. To obtain efficient designs, it is 
necessary to develop precise and robust techniques 
able to predict the aeroelastic characteristics of such 
systems. Across the years, aiming at this target, 
several authors have been developed structural 
models to study the dynamical behavior of large 
horizontal-axis wind turbines (LHAWT) and 
very different approaches have been explored. 
Petersen [1] presented a time domain model for 
simulating the dynamic response of a horizontal 
axis wind turbine. A general kinematic analysis 
was used to derive the local inertial loads. The 
wind turbine is subdivided into three sub-structures: 
the tower, the nacelle-shaft and the rotor blade. The 

model is discretized using the finite element 
technique. Lee et al. [2] developed a methodology 
representing the wind turbine as a multi-flexible-
body system with both rigid and flexible body 
sub-systems. Rigid body sub-systems (nacelle, hub) 
are modeled using Kane’s method, and flexible 
body sub-systems (tower, blades), using geome-
trically exact, non-linear beam finite elements. 
Jonkman and Buhl [3] developed the FAST code 
which is a comprehensive aeroelastic simulator. 
The FAST model employs a combined modal 
and multi-body dynamics formulation. Blades 
and tower are characterized using a linear modal 
representation while the remaining components 
are modeled as rigid bodies. Zhao et al. [4] deve-
loped a methodology based on the hybrid multi-
body system composed of rigid, flexible bodies, 
force elements and joints. With a cardanic joint 
beam element, the flexible bodies are modeled as 
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sets of rigid bodies connected by cardanic joints; 
thus a whole wind turbine structure can be repre-
sented by a discrete system of rigid bodies, springs, 
and dampers. A very detailed study focused on the 
rotor blade was developed by Kallesøe [5], who 
proposed an extension of Hodges-Dowell’s partial 
differential equations of blade motion [6], by 
including the effects of gravity, pitch action and 
rotor speed variations. The partial differential 
equations of motion are approximated by ordinary 
differential equations (ODEs) of motion using an 
assumed-modes method. 
This paper presents a reduced order structural 
model of a three-blade LHAWT. The blades are 
considered flexible, and their equations of motion 
(EoMs) are discretized in the space domain by 
using beam finite elements capable of taking into 
account the non-linearities coming from the 
kinematics. The tower is also considered flexible, 
but its EoMs are discretized using the method of 
assumed-modes. The nacelle and hub are consi-
dered rigid, and are represented by a geometric 
formulation which allows taking into account the 
effects of the kinematical non-linearities [7,8]. The 
current model involves different modeling 
approaches; in addition, the combination of 
different techniques for modeling the LHAWT 
components renders a very precise reduced order 
model. For solving the LHAWT EoMs in the 
time domain, a scheme based on a modified 
version of the fourth order Hamming’s predictor-
corrector method is used [9].  
 
2. DYNAMICAL MODEL 
 

2.1 Tower, Nacelle and Hub 
 

In this work, the tower, nacelle and hub are 
considered members of a single kinematical chain. 
It means that the position and orientation of any 
given point belonging to nacelle is related to the 
tower and the position and orientation of any given 
point belonging to the hub is related to the nacelle.  
The tower is modeled as a straight prismatic, 
linearly elastic, undamped beam. The root of the 
tower is rigidly attached to the ground and the 
nacelle is mounted at the top. The assumed-modes 
method [10,11] is used to obtain a model for the 
tower with few degrees of freedom (DoFs). We 
considered a mode for the after-forward bending, a 
mode for the side-to-side bending and another 
one for torsion about the longitudinal axis. 
The nacelle and hub are modeled as rigid bodies. 
The nacelle can rotate respect to the tower in a 
yaw angle, which is commanded by the control 
system. The hub can freely rotate respect to the 
nacelle in an azimuth angle. Both rotations are 
represented by a sequence of Euler’s angles. 
The EoMs for the tower, nacelle and hub as a 

single kinematical chain can be expressed as    

 [ ]{ } [ ]{ } { }g k c
tnh tnh tnh tnh tnh tnh tnh+ = + +M q K q f f fɺɺ , (1) 

where qtnh is the vector of generalized coordinates, 
Mtnh and Ktnh are the mass and stiffness matrices, 
respectively. g

tnhf  is the vector of generalized forces 
accounting the contributions coming from the 
aerodynamics, the gravitational field, the control 
systems and the electrical generator. k

tnhf  is a vector 
of kinematical forces accounting for the centrifugal 
and Coriolis’ effects on the nacelle and hub and 

c
tnhf  is the constraint forces vector due to effects 

of the blades, which is computed as 

 { } { }
3

1

T

c i
tnh i

i tnh=

 ∂
= −  ∂ 

∑f λ
q

φφφφ
,  (2) 

where iφφφφ  is the set of constraint equations corres-
ponding to the i-th blade and λλλλi is its vector of 
Lagrange’s multipliers [12, 13]. 
 
2.2 Blades 
 

Each blade is modeled as a non-straight, linearly 
elastic, undamped beam. We consider, separately, 
large displacements and rotations due to motions 
of the blade as a rigid body, and small displace-
ments and rotations due to the elastic deformation. 
The motions of the blade as a rigid body are 
called primary motions and its elastic motions 
are called secondary motions.  
The primary motions give the position and orien-
tation of the blades. The position is described by 
using three generalized coordinates and the 
orientation, by a unit quaternion [8,12], i.e. four 
generalized coordinates constrained because the 
addition of their squares must be always equal to 1.   
The secondary motions leads us to a set of partial 
differential equations for a continuous elastic 
medium. To obtain a finite set of ODEs, the blades 
are discretized using two-node beam finite elements 
along the elastic axis, where each node has six 
DoFs. In this work the structural mesh of the blade 
has twenty-two nodes.    
The EoMs for primary motions of blade 1 can be 
expressed as   

 [ ]{ } [ ]{ } { }1 1 1 1 1 1 1
g k c+ = + +q pɺɺ ɺɺMMMMM f f fM f f fM f f fM f f f , (3) 

where q1 and p1 are the generalized coordinates 
for primary and secondary motions, respectively. 

1MMMM  is the mass matrix for primary motions and 

1MMMM  is the mass matrix which couples the primary 
and secondary motions. 1

gffff  and 1
kffff  are vectors 

accounting for the generalized and kinematical 
forces, respectively, and 1

cffff  is the constraint forces 
vector due to the blade-hub attachment, which is 
computed as   



                      
 
 

Cuarto Congreso Nacional – Tercer Congreso Iberoamericano 
Hidrógeno y Fuentes Sustentables de Energía – HYFUSEN 2011 10-083 

 

 

 { } { }1
1 1

1

T

c  ∂= −  ∂ 
λ

q
ffff

φφφφ
.  (4) 

The EoMs for secondary motions of blade 1 can 
be expressed as 

 [ ]{ } [ ] { } [ ]{ } { }1 1 1 1 1 1 1 1

T g k+ + = +M p q K p f fɺɺ ɺɺMMMM , (5) 

where M1 and K1 are the mass and stiffness 
matrices, and 1

gf  and 1
kf  are vectors accounting 

for the generalized and kinematical forces, respec-
tively. These EoMs are reduced in size at every 
time step by using a modal projection scheme. 
The EoMs of blades 2 and 3 are obtained using a 
similar procedure. 
 
2.3 Constraints 
 

The roots of the blades are attached to the hub. Each 
blade can rotate respect to the hub in a pitch angle, 
which is commanded by the control system. Six 
constraint equations establish the linkage between 
the hub and each blade, three of them to specify the 
position and the other three to specify the orien-
tation. An extra constraint equation is required to 
specify the unit quaternion condition. 
The set of algebraic constraint equations for blade 1 
can be expressed as [12,13] 

 ( )1 1 ,tnh =q q 0φφφφ ,  (6) 

where only holonomic constraints are considered.  
Constraint equations for blades 2 and 3 are 
obtained following the same procedure. 
 
2.4 Governing equations 

The governing equations for the whole system 
are differential-algebraic equations (DAEs) since 
ODEs and algebraic constraint equations are 
involved. After deriving the constraint equations 
twice respect to time, the governing equations 
can be expressed as 

 
T     

=     −    

x fM B
λ BxB 0

ɺɺ

ɺ ɺ
,  (7) 

where f is a force vector containing all the 
contributions explained in previous subsections,   

 [ ]

1 1

1 1

2 2

2 2

3 3

3 3

tnh

T

T

T

 
 
 
 

=  
 
 
 
  

M 0 0 0 0 0 0
0 0 0 0 0

0 M 0 0 0 0
0 0 0 0 0

0 0 0 M 0 0
0 0 0 0 0

0 0 0 0 0 M

M

MMMM

MMMM

MMMM

MMMM

MMMM

MMMM

MMMM

MMMM

MMMM

 (8) 

is the system mass matrix, 

 [ ]

1 1

1

2 2

2

3 3

3

∂ ∂
∂ ∂
∂ ∂

∂ ∂
∂ ∂

∂ ∂

 
 
 
 =  
 
 
 
 

0 0 0 0 0
q q

0 0 0 0 0
q q

0 0 0 0 0
q q

B

tnh

tnh

tnh

φ φφ φφ φφ φ

φ φφ φφ φφ φ

φ φφ φφ φφ φ

 (9) 

is the system constraint jacobian matrix,  

 { }1 1 2 2 3 3

T

tnh=x q q p q p q p  (10) 

is the generalized coordinates vector, and 

 { }1 2 3

T=λ λ λ λ  (11) 

is the Lagrange’s multipliers vector  
 
3. AERODYNAMIC LOADS 
 

Let us consider a body immersed in a fluid 
stream. When the Reynold’s number is large, the 
viscous effects can be confined to those regions 
close to the solid surface; these vorticity-
dominated regions are called boundary layers. Part 
of the vorticity contained in the boundary layers is 
shed downstream into the flow field, where it can 
only be transported by the fluid particles, but 
neither created nor destroyed. This transported 
vorticity forms the wakes behind the body.  
The thickness of the boundary layers and wakes 
tends to zero when the Reynold's number tends 
to infinity. Under this condition, the boundary layers 
and wakes can be represented as continuous 
bounded and free sheets of vorticity, respectively. 
In the Unsteady Vortex-Lattice Method (UVLM), 
the continuous bounded vortex sheets of the 
boundary layers are discretized into a lattice of 
short, straight vortex segments of constant circu-
lation. These segments divide the surface of the 
body into a finite number of area elements. The 
model is completed by joining free vortex lines, 
representing the continuous free vortex sheets of 
the wakes, to the bounded vortex lattice along 
the separation sharp edges where the separation 
takes place. In our study case the separation edges 
are the trailing edges and tips of the rotor blades. 
Each area element in the lattice is enclosed by a 
loop of vortex segments. To reduce the size of 
the problem, each element is considered to be 
enclosed by a closed loop of vortex segments 
having the same circulation, i.e. vortex rings of 
constant circulation. Then the spatial conservation 
of circulation is automatically satisfied.  
The circulations of the vortex rings are determined 
by using a discrete version of the non-penetration 
boundary condition, the fluid cannot penetrate the 
solid surface, taking into account the contribution 
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of the free stream, the wakes and the velocity of 
the solid surface. At each step of time, after the 
determination of the rings circulations, vortex 
segments are shed into the flow-field and become 
part of the grids that approximate the free vortex 
sheets of the wakes. 
By using an extended version of the UVLM deve-
loped by Gebhardt et al. [14], we estimate the 
magnitude and evolution of the aerodynamic 
loads in the time domain. This version allows 
taking into account the presence of both, the 
tower and the land-surface boundary layer. The 
capability to capture these phenomena is a novel 
aspect of the aerodynamical model.  
 
4. NUMERICAL INTEGRATION SCHEME 
 
The second-order governing differential equations 
have to be re-written as first order system and 
integrated in the time domain as follows:   

1. At 0t =  the initial conditions are known. 

2. At t t= ∆  the solution is predicted by the 
explicit Euler’s method, and then corrected 
iteratively by the modified Euler’s method.  

3. At 2t t= ∆  the solution is predicted by the 
two-step Adams-Bashfort method, and then 
corrected iteratively by the two-steps Adams-
Moulton method.  

4. At 3t t= ∆  the solution is predicted by the 
three-step Adams-Bashfort method, and then 
corrected iteratively by the three-step Adams-
Moulton method.  

5. At t n t= ∆ , for 4n ≥  the solution is predicted 
and corrected by the fourth order modified 
Hamming’s method [9]. 

It is important to remark that, Lagrange’s 
multiplier values are obtained at every time step 
as part of the solution.  
Due to the constraints, this kind of systems usually 
shows some instabilities which can be easily sup-
pressed by using the Baumgarte’s stabilization 
scheme [15].   
This integration methodology allows solving 
problems in which acceleration terms are present 
on both sides of the governing equations. This is 
a requirement since the aerodynamic loads depend 
on acceleration, velocity, position and orientation 
of the blades, and the estimation of these forces 
must be carried out at integer multiples of the time 
steps. In general the aerodynamic loads computation 
represents the highest computing cost, and its 
evaluation inside the time steps would be very 
expensive.  

5. RESULTS 
 

This section presents the results obtained with the 
computational tool based on the developed model. 
Simulations were carried out for a standard 3-
blade LHAWT with 45-meter blades and a 68-
meter tower, which is erected in a flat terrain 
with very low building density as any rural zone. 
The structural model has a total of 13 DoFs, 
which includes 3 for the tower, 1 for the rotor and 
3 for each blade.  
In the present effort, the cases of study focus on 
the response of the LHAWT under different wind 
conditions and keeping the yaw and pitch configu-
rations fixed. To reach this goal we consider two 
different wind speeds, 15 and 20 m/s, at which 
the responses of the tower, rotor and blades are 
investigated. It is important to remark that these 
are reference values for the land-surface boundary 
layer, since the wind profile is not constant but 
rather varies with height. 

4.1  Case vwind = 15 m/s  
 

In Figure 1, the rotor angular speed is plotted as a 
function of revolutions. The rotor speed increases 
gradually until it reaches the steady state after 
two and half revolutions. This is due to the power 
rate of the electrical generator and the aerodynamic 
damping. In the steady state, the angular speed is 
approximately 7.4 RPM and the mean produced 
power is 1.2 MW.       

0 1 2 3 4
0
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10

Revolutions

R
P

M

 
Figure 1. Rotor angular velocity. 

In Figure 2, the after-forward displacement of the 
tower top is plotted. The tower bends forward and 
vibrates respect to an equilibrium position with 
small amplitude. This behavior is dominated by 
the gravitational loads due to the heavy masses 
of the hub, the nacelle and blades positioned in 
front of the tower. These actions predominate on 
the aerodynamic loads which push the tower 
backwards.    
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Figure 2. After-forward displacement of the tower. 



                      
 
 

Cuarto Congreso Nacional – Tercer Congreso Iberoamericano 
Hidrógeno y Fuentes Sustentables de Energía – HYFUSEN 2011 10-083 

 

 

In figure 3, the side-to-side displacement of the tower 
top is plotted. The tower bends to the left because the 
electrical generator produces a reacting moment 
when it takes energy from the rotor (power rate) 
which rotates clock-wise. The tower vibrates 
respect an equilibrium position, but the amplitude 
is higher than the after-forward displacement.   
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Figure 3. Side-to-side displacement of the tower. 

In Figure 4, the flap-wise displacements of the 
blade tips are plotted. The blades bend up and 
vibrate; the mean value depends on the aerody-
namic loads but the amplitude of the vibration is 
mainly governed by the gravitational loads. It is 
very important to remark that the responses of 
the blades present a dephasing angle of 120º that 
shows coherence respect to the geometric confi-
guration of the rotor. 
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Figura 4. Flap-wise displacement of the blades. 

In Figure 5, the edge-wise displacements of the 
blades tips are plotted. The blades vibrate in the 
edge direction with a mean value close to the 
undeformed position, because the gravitational 
forces predominate, and so when the blades are 
climbing or falling, they encounter almost the 
same load distribution but the sign changes. 
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Figura 5. Edge-wise displacement of the blades. 

4.2 Case vwind = 20 m/s: 
 

In Figure 6, the rotor angular speed is plotted. 
The rotor speed shows the same trend of the 
previous case but in the steady state, the angular 
speed is approximately 11.5 RPM and the mean 
produced power is 2.9 MW. Despite the 33% 
increase in wind speed, the angular speed and 
mean produced power increase 55% and 142%, 
respectively. This fact shows the non-linear 
characteristic of the attacked problem. 
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Figure 6. Rotor angular velocity. 

In Figure 7, the after-forward displacement of the 
tower top is plotted. The tower bends backwards 
and returns close to the undeformed position. From 
this position, the tower vibrates with small amplitude 
because at the beginning the aerodynamic loads 
predominate but after some time only gravitational 
loads do. Note that this behavior is different from 
the one observed in Figure 2. 
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Figure 7. After-forward displacement of the tower. 

In Figure 8, the side-to-side displacement of the 
tower top is plotted. As in the previous case, the 
tower bends to the left but this time the mean 
value and amplitude increase 50% and 200%, 
respectively.     
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Figure 8. Side-to-side displacement of the tower. 
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In Figure 9, the flap-wise displacements of the 
blade tips are plotted. As in the previous case, 
the blades bend up showing the same trend, but 
the mean value increases 67% whereas the 
amplitude does changes significantly. 
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Figura 9. Flap-wise displacement of the blades. 

In Figure 10, the edge-wise displacements of the 
blades tips are plotted. As in the previous case, 
the blades vibrate. Although the mean value and 
the amplitude increase a little, changes are no rele-
vant since the gravitational forces predominate. 
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Figura 10. Edge-wise displacement of the blades. 
 
6. CONCLUDING REMARKS 
 
It can be concluded that, as the wind speed increases, 
the steady state angular speed and the produced 
power also increase. However, the second grows 
faster and shows a strong non-linearity. 
The after-forward displacement of the tower 
strongly depends on the gravitational loads when 
the wind speed is not very large, but as the wind 
speed increases the aerodynamic loads become 
more and more relevant. 
The side-to-side displacement of the tower depends 
on the aerodynamic loads and the power rate of 
the electrical generator. 
The mean value of the flap-wise displacement 
mainly depends on the aerodynamic loads. 
However, the amplitude of the vibrations mainly 
depends on the gravitational loads. 
The edge-wise displacement mainly depends on 
the gravitational loads and it does not change 
significantly when the wind speed varies. 
Although the proposed model constitutes a good 
starting point to get an understanding of the aero- 

elastic behavior of LHAWTs, in the future it will 
be necessary to expand the present ideas and add 
a very precise model of the power generation 
dynamics, the dynamics of the electrical network 
and/or the dynamics associated to a hydrogen 
production system based on wind energy.  
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