29 research outputs found

    Calanus finmarchicus basin scale life history traits and role in community carbon turnover during spring

    Get PDF
    The copepod Calanus finmarchicus was investigated in four Subpolar Basins, Labrador, Irminger, Iceland, and Norwegian Seas, during spring, covering the time of ascent, grazing, and initiation of reproduction in the area. Lipid content, spawning activity, and stage composition and vital rates, such as egg and faecal pellet production were measured and linked to environmental parameters. Specific egg- and faecal pellet production rates varied with diatom biomass and were negatively correlated with temperature. Comparison of the various biological indicators revealed different life history traits C. finmarchicus has adopted in the different basins. In Labrador Sea, the females have invested in large eggs compared to the remaining basins. Labrador and Irminger Sea C. finmarchicus invest in size that we propose to be adaptation to cope with warmer overwintering habitats resulting in larger potential lipid storage capacity, while the Iceland and Norwegian Sea females can invest their remaining lipid storage in spring to fuel lipid-driven egg production. Grazing pressure on the phytoplankton community was estimated and compared between copepod and two dominating groups of protozooplankton; ciliates and heterotrophic dinoflagellates. Despite approximately the same biomass in the upper 100 m, the grazing impact of the protozoan grazers was an order of magnitude higher than the C. finmarchicus dominated mesozooplankton. This illustrates the importance to also include the smallest grazers when studying the spring bloom in high latitude marine ecosystems if the fate of the primary production should be fully understood.publishedVersio

    Extensive cross-disciplinary analysis of biological and chemical control of Calanus finmarchicus reproduction during an aldehyde forming diatom bloom in mesocosms

    Get PDF
    Egg and faecal pellet production and egg hatching success of the calanoid copepod Calanus finmarchicus were monitored over a period of 14 days (14-28 April, 2008) while fed water from 4 differently treated mesocosms and ambient water. Two of the mesocosms used were inoculated with the polyunsaturated aldehyde (PUA)-producing diatom Skeletonema marinoi, while 2 received only nutrient additions with or without silica. The mesocosms developed blooms of S. marinoi, mixed diatoms or the haptophyte Phaeocystis pouchetii, respectively. Faecal pellet production of C. finmarchicus increased with increasing food availability. Egg production increased with time in all mesocosms to a maximum single female production of 232 eggs female(-1) day(-1) (average of 90 eggs female(-1) day(-1)) and followed the development of ciliates and P. pouchetii, but was not affected by the observed high (up to 15 nmol L(-1)) PUA production potential of the phytoplankton. The hatching success of the eggs produced on the mesocosm diets was high (78-96%) and was not affected by either aldehydes in the maternal diet or exposure to the dissolved aldehydes in the water

    Sensitivity of Calanus spp. copepods to environmental changes in the North Sea using life-stage structured models

    Get PDF
    The copepods Calanus finmarchicus and C. helgolandicus co-exist in the North Sea, but their spatial distribution and phenology are very different. Long-term changes in their distributions seem to occur due to climate change resulting in a northward extension of C. helgolandicus and a decline of C. finmarchicus in this region. The aim of this study is to use life-stage structured models of the two Calanus species embedded in a 3D coupled hydrodynamic-biogeochemical model to investigate how the biogeography of C. finmarchicus and C. helgolandicus is modified by changes in ± 2°C sea water temperatures, overwintering and oceanic inflow in the North Sea. Life-stage structured models are validated against CPR data and vertical distributions north of the Dogger Bank in the North Sea for the reference year 2005. The model shows that 1) ± 2°C changes from the current level mainly influence the seasonal patterns and not the relative occurrence of the two species, 2) changes due to oceanic inflow mainly appeared in the northern and southern part of the North Sea connected to the NE Atlantic and not in the central part and 3) the abundance of Calanus species were very sensitive to the degree of overwintering within the North Sea because it allows them to utilize the spring bloom more efficiently and independently of the timing and amount of oceanic inflow. The combination of lower temperatures, higher overwintering and oceanic inflow simulating the situation in the 1960s largely favoured C. finmarchicus and their relative contribution to Calanus spp. increased from 40% in the reference year to 72%. The +2°C scenario suggest that in a warmer future, C. finmarchicus is likely to decline and C. helgolandicus abundance will probably continue to increase in some area

    The global contribution of seasonally migrating copepods to the biological carbon pump

    No full text
    Every year, large numbers of zooplankton migrate from the surface ocean to depths of 500–2000 m to hibernate. Through this migration, they actively transport organic carbon to the deep ocean, where it is used to fuel metabolic needs. This active transport of carbon is thought to be highly efficient, as carbon metabolized by copepods is directly injected deep into the ocean's interior. The significance of this process in view of global carbon cycling remains an open question. Here, we focus on five representative, diapausing copepod species (Calanus finmarchicus, Calanus hyperboreus, Calanoides acutus, Calanoides natalis, and Neocalanus tonsus) distributed in the Arctic, Atlantic, Indian, and Southern Oceans. For each species, we compute both carbon injection (how much carbon is transported below the euphotic zone during zooplankton migration and left there as dissolved inorganic carbon) and carbon sequestration (the amount of carbon stored in the ocean's interior following diapausing zooplankton-mediated injection). In total, the five species considered here contribute 0.4–0.8% of total biological carbon export, and 0.8–3.3% of total carbon sequestration mediated by the biological pump (assuming a total carbon export of ~ 10 PgC yr−1 and sequestration of ~ 1300 PgC). Including other species in this inventory would increase the contribution of diapausing copepods to the biological carbon pump, but requires more precise estimates of copepods' distribution, abundance, and metabolic requirements

    Effect of heterotrophic versus autotrophic food on feeding and reproduction of the calanoid copepod Acartia tonsa: relationship with prey fatty acid composition

    No full text
    12 pages, 4 figures, 4 tablesWe determined the egg production efficiency (EPE: egg production/ingestion) and egg viability of the copepod Acartia tonsa Dana under different heterotrophic and autotrophic diets. EPE was estimated in adult females either as the slope of the linear relationship between specific egg production (EPR) and ingestion rates, or as the quotient: EPR/ingestion rate. The diets, offered in monoculture, were the heterotrophic ciliates Strombidium sulcatum or Mesodinium pulex, the heterotrophic dinoflagellate Gymnodinium dominans, the autotrophic cryptophyte Rhodomonas salina and the autotrophic dinoflagellate Gymnodinium sanguineum. The diets were also analyzed for fatty acid contents and composition, relationships with EPE and reproductive success were determined. Clear differences were found in the fatty acid contents and the composition of the different diets offered, but these differences did not correspond with variability in EPE. However, egg viability was correlated with ingestion of certain prey essential fatty acids; interestingly, our data do not show that ciliates and heterotrophic dinoflagellates are nutritionally superior prey for marine copepods, contrary to general expectationsPeer Reviewe
    corecore