155 research outputs found

    Partitioning of trace elements in a entrained flow IGCC plant: Influence of selected operational conditions

    Full text link
    The partitioning of trace elements and the influence of the feed conditions (50:50 coal/pet-coke feed blend and limestone addition) was investigated in this study. To this end feed fuel, fly ash and slag samples were collected under different operational conditions at the 335 MW Puertollano IGCC power plant (Spain) and subsequently analysed. The partitioning of elements in this IGCC plant may be summarised as follows: (a) high volatile elements (70–>99% in gas phase): Hg, Br, I, Cl and S; (b) moderately volatile elements (up to 40% in gas phase and 60% in fly ash): As, Sb, Se, B, F, Cd, Tl, Zn and Sn; (c) elements with high condensation potential: (>90% in fly ash): Pb, Ge, Ga and Bi; (d) elements enriched similarly in fly ash and slag 30–60% in fly ash: Cu, W, (P), Mo, Ni and Na; and (e) low volatile elements (>70% in slag): Cs, Rb, Co, K, Cr, V, Nb, Be, Hf, Ta, Fe, U, Ti, Al, Si, Y, Sr, Th, Zr, Mg, Ba, Mn, REEs, Ca and Li. The volatility of As, Sb, and Tl and the slagging of S, B, Cl, Cd and low volatile elements are highly influenced by the fuel geochemistry and limestone dosages, respectively

    Lianas Suppress Seedling Growth and Survival of 14 Tree Species in a Panamanian Tropical Forest

    Get PDF
    Lianas are a common plant growth form in tropical forests, where they compete intensely with trees, decreasing tree recruitment, growth, and survival. If the detrimental effects of lianas vary significantly with tree species identity, as is often assumed, then lianas may influence tree species diversity and community composition. Furthermore, recent studies have shown that liana abundance and biomass are increasing relative to trees in neotropical forests, which will likely magnify the detrimental effects of lianas and may ultimately alter tree species diversity, relative abundances, and community composition. Few studies, however, have tested the responses of multiple tree species to the presence of lianas in robust, well‐replicated experiments. We tested the hypotheses that lianas reduce tree seedling growth and survival, and that the effect of lianas varies with tree species identity. We used a large‐scale liana removal experiment in Central Panama in which we planted 14 replicate seedlings of 14 different tree species that varied in shade tolerance in each of 16 80 × 80 m plots (eight liana‐removal and eight unmanipulated controls; 3136 total seedlings). Over a nearly two‐yr period, we found that tree seedlings survived 75% more, grew 300% taller, and had twice the aboveground biomass in liana‐removal plots than seedlings in control plots, consistent with strong competition between lianas and tree seedlings. There were no significant differences in the response of tree species to liana competition (i.e., there was no species by treatment interaction), indicating that lianas had a similar negative effect on all 14 tree species. Furthermore, the effect of lianas did not vary with tree species shade tolerance classification, suggesting that the liana effect was not solely based on light. Based on these findings, recently observed increases in liana abundance in neotropical forests will substantially reduce tree regeneration, but will not significantly alter tropical tree species diversity, relative abundance, or community composition

    Identification of new targets of S-nitrosylation in neural stem cells by thiol redox proteomics

    Get PDF
    Nitric oxide (NO) is well established as a regulator of neurogenesis. NO increases the proliferation of neural stem cells (NSC), and is essential for hippocampal injury-induced neurogenesis following an excitotoxic lesion. One of the mechanisms underlying non-classical NO cell signaling is protein S-nitrosylation. This post-translational modification consists in the formation of a nitrosothiol group (R-SNO) in cysteine residues, which can promote formation of other oxidative modifications in those cysteine residues. S-nitrosylation can regulate many physiological processes, including neuronal plasticity and neurogenesis. In this work, we aimed to identify S-nitrosylation targets of NO that could participate in neurogenesis. In NSC, we identified a group of proteins oxidatively modified using complementary techniques of thiol redox proteomics. S-nitrosylation of some of these proteins was confirmed and validated in a seizure mouse model of hippocampal injury and in cultured hippocampal stem cells. The identified S-nitrosylated proteins are involved in the ERK/MAPK pathway and may be important targets of NO to enhance the proliferation of NSC.PTDC/QUI-QFI/29319/2017; UID/BIM/04773/2019info:eu-repo/semantics/publishedVersio

    Nitrosothiols in the immune system: Signaling and protection

    Full text link
    Antioxidants and Redox Signaling 18.3 (2013): 288-308Significance: In the immune system, nitric oxide (NO) has been mainly associated with antibacterial defenses exerted through oxidative, nitrosative, and nitrative stress and signal transduction through cyclic GMP-dependent mechanisms. However, S-nitrosylation is emerging as a post-translational modification (PTM) involved in NO-mediated cell signaling. Recent Advances: Precise roles for S-nitrosylation in signaling pathways have been described both for innate and adaptive immunity. Denitrosylation may protect macrophages from their own S-nitrosylation, while maintaining nitrosative stress compartmentalized in the phagosomes. Nitrosothiols have also been shown to be beneficial in experimental models of autoimmune diseases, mainly through their role in modulating T-cell differentiation and function. Critical Issues: Relationship between S-nitrosylation, other thiol redox PTMs, and other NO-signaling pathways has not been always taken into account, particularly in the context of immune responses. Methods for assaying S-nitrosylation in individual proteins and proteomic approaches to study the S-nitrosoproteome are constantly being improved, which helps to move this field forward. Future Directions: Integrated studies of signaling pathways in the immune system should consider whether S-nitrosylation/denitrosylation processes are among the PTMs influencing the activity of key signaling and adaptor proteins. Studies in pathophysiological scenarios will also be of interest to put these mechanisms into broader contexts. Interventions modulating nitrosothiol levels in autoimmune disease could be investigated with a view to developing new therapiesFinanced by the Spanish Government grants CSD2007-00020 (RosasNet, Consolider-Ingenio 2010 programme), CP07/00143 (Miguel Servet programme), and PS09/00101; and PI10/0213

    New Mediterranean Biodiversity Records (July 2015)

    Get PDF
    The Collective Article ‘New Mediterranean Biodiversity Records’ of the Mediterranean Marine Science journal offers the means to publish biodiversity records in the Mediterranean Sea. The current article is divided in two parts, for records of native and alien species respectively. The new records of native species include: the neon flying squid Ommastrephes bartramii in Capri Island, Thyrrenian Sea; the bigeye thresher shark Alopias superciliosus in the Adriatic Sea; a juvenile basking shark Cetorhinus maximus caught off Piran (northern Adriatic); the deep-sea Messina rockfish Scorpaenodes arenai in the National Marine Park of Zakynthos (East Ionian Sea, Greece); and the oceanic puffer Lagocephalus lagocephalus in the Adriatic Sea.The new records of alien species include: the red algae Antithamnionella elegans and Palisada maris-rubri, found for the first time in Israel and Greece respectively; the green alga Codium parvulum reported from Turkey (Aegean Sea); the first record of the alien sea urchin Diadema setosum in Greece; the nudibranch Goniobranchus annulatus reported from South-Eastern Aegean Sea (Greece); the opisthobranch Melibe viridis found in Lebanon; the new records of the blue spotted cornetfish Fistularia commersonii in the Alicante coast (Eastern Spain); the alien fish Siganus luridus and Siganus rivulatus in Lipsi Island, Dodecanese (Greece); the first record of Stephanolepis diaspros from the Egadi Islands Marine Protected Area (western Sicily); a northward expansion of the alien pufferfish Torquigener flavimaculosus along the southeastern Aegean coasts of Turkey; and data on the occurrence of the Lessepsian immigrants Alepes djedaba, Lagocephalus sceleratus and Fistularia commersonii in Zakynthos Island (SE Ionian Sea, Greece)

    A DNA damage repair gene-associated signature predicts responses of patients with advanced soft-tissue sarcoma to treatment with trabectedin

    Get PDF
    Predictive biomarkers of trabectedin represent an unmet need in advanced soft-tissue sarcomas (STS). DNA damage repair (DDR) genes, involved in homologous recombination or nucleotide excision repair, had been previously described as biomarkers of trabectedin resistance or sensitivity, respectively. The majority of these studies only focused on specific factors (ERCC1, ERCC5, and BRCA1) and did not evaluate several other DDR-related genes that could have a relevant role for trabectedin efficacy. In this retrospective translational study, 118 genes involved in DDR were evaluated to determine, by transcriptomics, a predictive gene signature of trabectedin efficacy. A six-gene predictive signature of trabectedin efficacy was built in a series of 139 tumor samples from patients with advanced STS. Patients in the high-risk gene signature group showed a significantly worse progression-free survival compared with patients in the low-risk group (2.1 vs 6.0 months, respectively). Differential gene expression analysis defined new potential predictive biomarkers of trabectedin sensitivity (PARP3 and CCNH) or resistance (DNAJB11 and PARP1). Our study identified a new gene signature that significantly predicts patients with higher probability to respond to treatment with trabectedin. Targeting some genes of this signature emerges as a potential strategy to enhance trabectedin efficacy.This study was funded by the Spanish Group for Research on Sarcoma (GEIS) and partially by PharmaMar. The authors would like to thank the GEIS data center for data management. The authors also thank the donors and the Hospital Universitario Virgen del Rocío—Instituto de Biomedicina de Sevilla Biobank (Andalusian Public Health System Biobank and ISCIII-Red de Biobancos PT17/0015/0041) for part of the human specimens used in this study. David S. Moura is recipient of a Sara Borrell postdoctoral fellowship funded by the National Institute of Health Carlos III (ISCIII) (CD20/00155)

    Predictive factors and early biomarkers of response in multiple sclerosis patients treated with natalizumab

    Get PDF
    There are an increasing number of treatments available for multiple sclerosis (MS). The early identification of optimal responders to individual treatments is important to achieve individualized therapy. With this aim, we performed a multicenter retrospective longitudinal study including 186 MS patients treated with natalizumab who were followed for 2 years. We analyzed the following variables at recruitment: sex, current age, age at disease onset, disease duration, EDSS, number of T2 and Gd + lesions, IgG and IgM oligoclonal bands, HLA class II (DR, DRB, DQA, DQB, and DRB1*15:01), IgG and IgM antibody titers against human herpesvirus 6 (HHV-6) and the antibody response to Epstein–Barr virus (EBV) through the measurement of the anti-EBNA-1 and anti-VCA IgG titers, in relation to clinical response (no relapses or disability progression), and to NEDA-3 (no evidence of disease activity in terms of clinical response and no changes in MRI scans either) after 2-years follow-up. Baseline EDSS score, baseline EBNA-1 IgG titers and percentage change of HHV6 IgG titers between baseline and 6 month visits were significantly different in clinical responders and in NEDA-3 status (all of them remained significant in the multivariate analysis). We identified three variables for the early identification of natalizumab optimal responders in a rapid and cost-effective approach

    Patients receiving a high burden of antibiotics in the community in Spain: a cross-sectional study

    Get PDF
    Some patients in the community receive a high burden of antibiotics. We aimed at describing the characteristics of these patients, antibiotics used, and conditions for which they received antibiotics. We carried out a cross-sectional study. Setting: Thirty Health Primary Care Areas from 12 regions in Spain, covering 5, 960, 191 inhabitants. Patients having at least 30 packages of antibacterials for systemic use dispensed in 2017 were considered. Main outcome measures: Prevalence of antibiotic use, conditions for which antibiotics were prescribed, clinical characteristics of patients, comorbidities, concomitant treatments, and microbiological isolates. Patient''s average age was 70 years; 52% were men; 60% smokers/ex-smokers; 54% obese. Overall, 93% of patients had, at least, one chronic condition, and four comorbidities on average. Most common comorbidities were cardiovascular and/or hypertension (67%), respiratory diseases (62%), neurological/mental conditions (32%), diabetes (23%), and urological diseases (21%); 29% were immunosuppressed, 10% were dead at the time of data collection. Patients received three antibiotic treatments per year, mainly fluoroquinolones (28%), macrolides (21%), penicillins (19%), or cephalosporins (12%). Most frequently treated conditions were lower respiratory tract (infections or prophylaxis) (48%), urinary (27%), and skin/soft tissue infections (11%). Thirty-five percent have been guided by a microbiological diagnosis, being Pseudomonas aeruginosa (30%) and Escherichia coli (16%) the most frequent isolates. In conclusion, high antibiotic consumers in the community were basically elder, with multimorbidity and polymedication. They frequently received broad-spectrum antibiotics for long periods of time. The approach to infections in high consumers should be differentiated from healthy patients receiving antibiotics occasionally
    corecore