20 research outputs found

    Building the Future Therapies for Down Syndrome:The Third International Conference of the T21 Research Society

    Get PDF
    Research focused on Down syndrome has increased in the last several years to advance understanding of the consequences of trisomy 21 (T21) on molecular and cellular processes and, ultimately, on individuals with Down syndrome. The Trisomy 21 Research Society (T21RS) is the premier scientific organization for researchers and clinicians studying Down syndrome. The Third International Conference of T21RS, held June 6-9, 2019, in Barcelona, Spain, brought together 429 scientists, families, and industry representatives to share the latest discoveries on underlying cellular and molecular mechanisms of T21, define cognitive and behavioral challenges and better understand comorbidities associated with Down syndrome, including Alzheimer's disease and leukemia. Presentation of cutting-edge results in neuroscience, neurology, model systems, psychology, cancer, biomarkers and molecular and phar-ma-cological therapeutic approaches demonstrate the compelling interest and continuing advancement in all aspects of understanding and ameliorating conditions associated with T21

    Association of biological sex with clinical outcomes and biomarkers of Alzheimer's disease in adults with Down syndrome

    Get PDF
    The study of sex differences in Alzheimer's disease is increasingly recognized as a key priority in research and clinical development. People with Down syndrome represent the largest population with a genetic link to Alzheimer's disease (>90% in the 7th decade). Yet, sex differences in Alzheimer's disease manifestations have not been fully investigated in these individuals, who are key candidates for preventive clinical trials. In this double-centre, cross-sectional study of 628 adults with Down syndrome [46% female, 44.4 (34.6; 50.7) years], we compared Alzheimer's disease prevalence, as well as cognitive outcomes and AT(N) biomarkers across age and sex. Participants were recruited from a population-based health plan in Barcelona, Spain, and from a convenience sample recruited via services for people with intellectual disabilities in England and Scotland. They underwent assessment with the Cambridge Cognitive Examination for Older Adults with Down Syndrome, modified cued recall test and determinations of brain amyloidosis (CSF amyloid-β 42 / 40 and amyloid-PET), tau pathology (CSF and plasma phosphorylated-tau181) and neurodegeneration biomarkers (CSF and plasma neurofilament light, total-tau, fluorodeoxyglucose-PET and MRI). We used within-group locally estimated scatterplot smoothing models to compare the trajectory of biomarker changes with age in females versus males, as well as by apolipoprotein ɛ4 carriership. Our work revealed similar prevalence, age at diagnosis and Cambridge Cognitive Examination for Older Adults with Down Syndrome scores by sex, but males showed lower modified cued recall test scores from age 45 compared with females. AT(N) biomarkers were comparable in males and females. When considering apolipoprotein ɛ4, female ɛ4 carriers showed a 3-year earlier age at diagnosis compared with female non-carriers (50.5 versus 53.2 years, P = 0.01). This difference was not seen in males (52.2 versus 52.5 years, P = 0.76). Our exploratory analyses considering sex, apolipoprotein ɛ4 and biomarkers showed that female ɛ4 carriers tended to exhibit lower CSF amyloid-β 42/amyloid-β 40 ratios and lower hippocampal volume compared with females without this allele, in line with the clinical difference. This work showed that biological sex did not influence clinical and biomarker profiles of Alzheimer's disease in adults with Down syndrome. Consideration of apolipoprotein ɛ4 haplotype, particularly in females, may be important for clinical research and clinical trials that consider this population. Accounting for, reporting and publishing sex-stratified data, even when no sex differences are found, is central to helping advance precision medicine

    Immune dysregulation and the increased risk of complications and mortality following respiratory tract infections in adults with Down dyndrome

    Get PDF
    The risk of severe outcomes following respiratory tract infections is significantly increased in individuals over 60 years, especially in those with chronic medical conditions, i.e., hypertension, diabetes, cardiovascular disease, dementia, chronic respiratory disease, and cancer. Down Syndrome (DS), the most prevalent intellectual disability, is caused by trisomy-21 in ~1:750 live births worldwide. Over the past few decades, a substantial body of evidence has accumulated, pointing at the occurrence of alterations, impairments, and subsequently dysfunction of the various components of the immune system in individuals with DS. This associates with increased vulnerability to respiratory tract infections in this population, such as the influenza virus, respiratory syncytial virus, SARS-CoV-2 (COVID-19), and bacterial pneumonias. To emphasize this link, here we comprehensively review the immunobiology of DS and its contribution to higher susceptibility to severe illness and mortality from respiratory tract infections

    Differential deregulation of NGF and BDNF neurotrophins in a transgenic rat model of Alzheimer's disease

    Get PDF
    Evidence from human neuropathological studies indicates that the levels of the neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are compromised in Alzheimer's disease. However, the causes and temporal (pathology-dependent) evolution of these alterations are not completely understood. To elucidate these issues, we investigated the McGill-R-Thy1-APP transgenic rat, which exhibits progressive intracellular and extracellular amyloid-beta (Aβ) pathology and ensuing cognitive deficits. Neurochemical analyses revealed a differential dysregulation of NGF and BDNF transcripts and protein expression. While BDNF mRNA levels were significantly reduced at very early stages of amyloid pathology, before plaques appeared, there were no changes in NGF mRNA expression even at advanced stages. Paradoxically, the protein levels of the NGF precursor were increased. These changes in neurotrophin expression are identical to those seen during the progression of Alzheimer's disease. At advanced pathological stages, deficits in the protease cascade controlling the maturation and degradation of NGF were evident in McGill transgenic rats, in line with the paradoxical upregulation of proNGF, as seen in Alzheimer's disease, in the absence of changes in NGF mRNA. The compromise in NGF metabolism and BDNF levels was accompanied by downregulation of cortical cholinergic synapses; strengthening the evidence that neurotrophin dysregulation affects cholinergic synapses and synaptic plasticity. Our findings suggest a differential temporal deregulation of NGF and BDNF neurotrophins, whereby deficits in BDNF mRNA appear at early stages of intraneuronal Aβ pathology, before alterations in NGF metabolism and cholinergic synapse loss manifest.Fil: Iulita, M. Florencia. McGill University; CanadáFil: Bistue Millon, Maria Beatriz. Universidad Católica de Cuyo - Sede San Juan. Facultad de Ciencias Médicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pentz, Rowan. Universidad Católica de Cuyo - Sede San Juan. Facultad de Ciencias Médicas; ArgentinaFil: Aguilar, Lisi Flores. McGill University; CanadáFil: Do Carmo, Sonia. McGill University; CanadáFil: Allard, Simon. McGill University; CanadáFil: Michalski, Bernadeta. Mc Master University; CanadáFil: Wilson, Edward N.. McGill University; CanadáFil: Ducatenzeiler, Adriana. Universidad Católica de Cuyo - Sede San Juan. Facultad de Ciencias Médicas; ArgentinaFil: Bruno, Martin. Universidad Católica de Cuyo - Sede San Juan. Facultad de Ciencias Médicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fahnestock, Margaret. Mc Master University; CanadáFil: Cuello, A. Claudio. McGill University; Canad

    Diagnosis of prodromal and Alzheimer's disease dementia in adults with Down syndrome using neuropsychological tests

    Full text link
    Introduction: We aimed to define prodromal Alzheimer's disease (AD) and AD dementia using normative neuropsychological data in a large population-based cohort of adults with Down syndrome (DS). Methods: Cross-sectional study. DS participants were classified into asymptomatic, prodromal AD and AD dementia, based on neurologist's judgment blinded to neuropsychological data (Cambridge Cognitive Examination for Older Adults with Down's syndrome [CAMCOG-DS] and modified Cued Recall Test [mCRT]). We compared the cutoffs derived from the normative data in young adults with DS to those from receiveroperating characteristic curve (ROC) analysis. Results: Diagnostic performance of the CAMCOG-DS and modified Cued Recall Test (mCRT) in subjects with mild and moderate levels of intellectual disability (ID) was high, both for diagnosing prodromal AD and AD dementia (area under the curve [AUC] 0.73- 0.83 and 0.90-1, respectively). The cutoffs derived from the normative data were similar to those derived from the ROC analyses. Discussion: Diagnosing prodromal AD and AD dementia in DS with mild and moderate ID using population norms for neuropsychological tests is possible with high diagnostic accuracy

    Association of Alzheimer Disease with Life Expectancy in People with Down Syndrome

    Get PDF
    Importance: People with Down syndrome have a high risk of developing Alzheimer disease dementia. However, penetrance and age at onset are considered variable, and the association of this disease with life expectancy remains unclear because of underreporting in death certificates. Objective: To assess whether the variability in symptom onset of Alzheimer disease in Down syndrome is similar to autosomal dominant Alzheimer disease and to assess its association with mortality. Design, Setting, and Participants: This study combines a meta-analysis with the assessment of mortality data from US death certificates (n = 77347 case records with a International Classification of Diseases code for Down syndrome between 1968 to 2019; 37900 [49%] female) and from a longitudinal cohort study (n = 889 individuals; 46% female; 3.2 [2.1] years of follow-up) from the Down Alzheimer Barcelona Neuroimaging Initiative (DABNI). Main Outcomes and Measures: A meta-analysis was conducted to investigate the age at onset, age at death, and duration of Alzheimer disease dementia in Down syndrome. PubMed/Medline, Embase, Web of Science, and CINAHL were searched for research reports, and OpenGray was used for gray literature. Studies with data about the age at onset or diagnosis, age at death, and disease duration were included. Pooled estimates with corresponding 95% CIs were calculated using random-effects meta-analysis. The variability in disease onset was compared with that of autosomal dominant Alzheimer disease. Based on these estimates, a hypothetical distribution of age at death was constructed, assuming fully penetrant Alzheimer disease. These results were compared with real-world mortality data. Results: In this meta-analysis, the estimate of age at onset was 53.8 years (95% CI, 53.1-54.5 years; n = 2695); the estimate of age at death, 58.4 years (95% CI, 57.2-59.7 years; n = 324); and the estimate of disease duration, 4.6 years (95% CI, 3.7-5.5 years; n = 226). Coefficients of variation and 95% prediction intervals of age at onset were comparable with those reported in autosomal dominant Alzheimer disease. US mortality data revealed an increase in life expectancy in Down syndrome (median [IQR], 1 [0.3-16] years in 1968 to 57 [49-61] years in 2019), but with clear ceiling effects in the highest percentiles of age at death in the last decades (90th percentile: 1990, age 63 years; 2019, age 65 years). The mortality data matched the limits projected by a distribution assuming fully penetrant Alzheimer disease in up to 80% of deaths (corresponding to the highest percentiles). This contrasts with dementia mentioned in 30% of death certificates but is in agreement with the mortality data in DABNI (78.9%). Important racial disparities persisted in 2019, being more pronounced in the lower percentiles (10th percentile: Black individuals, 1 year; White individuals, 30 years) than in the higher percentiles (90th percentile: Black individuals, 64 years; White individuals, 66 years). Conclusions and Relevance: These findings suggest that the mortality data and the consistent age at onset were compatible with fully penetrant Alzheimer disease. Lifespan in persons with Down syndrome will not increase until disease-modifying treatments for Alzheimer disease are available

    Public perceptions of brain health: an international, online cross-sectional survey

    Get PDF
    Objectives To investigate public perspectives on brain health. Design Cross-sectional multilanguage online survey. Setting Lifebrain posted the survey on its website and social media and shared it with stakeholders. The survey was open from 4 June 2019 to 31 August 2020. Participants n=27 590 aged ≥18 years from 81 countries in five continents completed the survey. The respondents were predominantly women (71%), middle aged (41–60 years; 37%) or above (>60 years; 46%), highly educated (69%) and resided in Europe (98%). Main outcome measures Respondents’ views were assessed regarding factors that may influence brain health, life periods considered important to look after the brain and diseases and disorders associated with the brain. We run exploratory linear models at a 99% level of significance to assess correlates of the outcome variables, adjusting for likely confounders in a targeted fashion. Results Of all significant effects, the respondents recognised the impact of lifestyle factors on brain health but had relatively less awareness of the role socioeconomic factors might play. Most respondents rated all life periods as important for the brain (95%–96%), although the prenatal period was ranked significantly lower (84%). Equally, women and highly educated respondents more often rated factors and life periods to be important for brain health. Ninety-nine per cent of respondents associated Alzheimer’s disease and dementia with the brain. The respondents made a connection between mental health and the brain, and mental disorders such as schizophrenia and depression were significantly more often considered to be associated with the brain than neurological disorders such as stroke and Parkinson’s disease. Few respondents (<32%) associated cancer, hypertension, diabetes and arthritis with the brain. Conclusions Differences in perceptions of brain health were noted among specific segments of the population. Policies providing information about brain-friendly health behaviours and targeting people less likely to have relevant experience may be needed

    Specific Susceptibility to COVID-19 in Adults with Down Syndrome

    Get PDF
    The current SARS-CoV-2 outbreak, which causes COVID-19, is particularly devastating for individuals with chronic medical conditions, in particular those with Down Syndrome (DS) who often exhibit a higher prevalence of respiratory tract infections, immune dysregulation and potential complications. The incidence of Alzheimer's disease (AD) is much higher in DS than in the general population, possibly increasing further the risk of COVID-19 infection and its complications. Here we provide a biological overview with regard to specific susceptibility of individuals with DS to SARS-CoV-2 infection as well as data from a recent survey on the prevalence of COVID-19 among them. We see an urgent need to protect people with DS, especially those with AD, from COVID-19 and future pandemics and focus on developing protective measures, which also include interventions by health systems worldwide for reducing the negative social effects of long-term isolation and increased periods of hospitalization
    corecore