652 research outputs found
Engineering orthogonal dual transcription factors for multi-input synthetic promoters
Synthetic biology has seen an explosive growth in the capability of engineering artificial gene circuits from transcription factors (TFs), particularly in bacteria. However, most artificial networks still employ the same core set of TFs (for example LacI, TetR and cI). The TFs mostly function via repression and it is difficult to integrate multiple inputs in promoter logic. Here we present to our knowledge the first set of dual activator-repressor switches for orthogonal logic gates, based on bacteriophage λ cI variants and multi-input promoter architectures. Our toolkit contains 12 TFs, flexibly operating as activators, repressors, dual activator–repressors or dual repressor–repressors, on up to 270 synthetic promoters. To engineer non cross-reacting cI variants, we design a new M13 phagemid-based system for the directed evolution of biomolecules. Because cI is used in so many synthetic biology projects, the new set of variants will easily slot into the existing projects of other groups, greatly expanding current engineering capacities
A unified design space of synthetic stripe-forming networks
Synthetic biology is a promising tool to study the function and properties of gene regulatory networks. Gene circuits with predefined behaviours have been successfully built and modelled, but largely on a case-by-case basis. Here we go beyond individual networks and explore both computationally and synthetically the design space of possible dynamical mechanisms for 3-node stripe-forming networks. First, we computationally test every possible 3-node network for stripe formation in a morphogen gradient. We discover four different dynamical mechanisms to form a stripe and identify the minimal network of each group. Next, with the help of newly established engineering criteria we build these four networks synthetically and show that they indeed operate with four fundamentally distinct mechanisms. Finally, this close match between theory and experiment allows us to infer and subsequently build a 2-node network that represents the archetype of the explored design space
Combining a Toggle Switch and a Repressilator within the AC-DC Circuit Generates Distinct Dynamical Behaviors.
Although the structure of a genetically encoded regulatory circuit is an important determinant of its function, the relationship between circuit topology and the dynamical behaviors it can exhibit is not well understood. Here, we explore the range of behaviors available to the AC-DC circuit. This circuit consists of three genes connected as a combination of a toggle switch and a repressilator. Using dynamical systems theory, we show that the AC-DC circuit exhibits both oscillations and bistability within the same region of parameter space; this generates emergent behaviors not available to either the toggle switch or the repressilator alone. The AC-DC circuit can switch on oscillations via two distinct mechanisms, one of which induces coherence into ensembles of oscillators. In addition, we show that in the presence of noise, the AC-DC circuit can behave as an excitable system capable of spatial signal propagation or coherence resonance. Together, these results demonstrate how combinations of simple motifs can exhibit multiple complex behaviors
Genetically encoded sender-receiver system in 3D mammalian cell culture
Engineering spatial patterning in mammalian cells, employing entirely genetically encoded components, requires solving several problems. These include how to code secreted activator or inhibitor molecules and how to send concentration-dependent signals to neighboring cells, to control gene expression. The Madin-Darby Canine Kidney (MDCK) cell line is a potential engineering scaffold as it forms hollow spheres (cysts) in 3D culture and tubulates in response to extracellular hepatocyte growth factor (HGF). We first aimed to graft a synthetic patterning system onto single developing MDCK cysts. We therefore developed a new localized transfection method to engineer distinct sender and receiver regions. A stable reporter line enabled reversible EGFP activation by HGF and modulation by a secreted repressor (a truncated HGF variant, NK4). By expanding the scale to wide fields of cysts, we generated morphogen diffusion gradients, controlling reporter gene expression. Together, these components provide a toolkit for engineering cell-cell communication networks in 3D cell culture.Facultad de Ciencias Exacta
Precise targeted integration by a chimaeric transposase zinc-finger fusion protein
Transposons of the Tc1/mariner family have been used to integrate foreign DNA stably into the genome of a large variety of different cell types and organisms. Integration is at TA dinucleotides located essentially at random throughout the genome, potentially leading to insertional mutagenesis, inappropriate activation of nearby genes, or poor expression of the transgene. Here, we show that fusion of the zinc-finger DNA-binding domain of Zif268 to the C-terminus of ISY100 transposase leads to highly specific integration into TA dinucleotides positioned 6-17 bp to one side of a Zif268 binding site. We show that the specificity of targeting can be changed using Zif268 variants that bind to sequences from the HIV-1 promoter, and demonstrate a bacterial genetic screen that can be used to select for increased levels of targeted transposition. A TA dinucleotide flanked by two Zif268 binding sites was efficiently targeted by our transposase-Zif268 fusion, suggesting the possibility of designer ‘Z-transposases’ that could deliver transgenic cargoes to chosen genomic locations
Improved Network Performance via Antagonism: From Synthetic Rescues to Multi-drug Combinations
Recent research shows that a faulty or sub-optimally operating metabolic
network can often be rescued by the targeted removal of enzyme-coding
genes--the exact opposite of what traditional gene therapy would suggest.
Predictions go as far as to assert that certain gene knockouts can restore the
growth of otherwise nonviable gene-deficient cells. Many questions follow from
this discovery: What are the underlying mechanisms? How generalizable is this
effect? What are the potential applications? Here, I will approach these
questions from the perspective of compensatory perturbations on networks.
Relations will be drawn between such synthetic rescues and naturally occurring
cascades of reaction inactivation, as well as their analogues in physical and
other biological networks. I will specially discuss how rescue interactions can
lead to the rational design of antagonistic drug combinations that select
against resistance and how they can illuminate medical research on cancer,
antibiotics, and metabolic diseases.Comment: Online Open "Problems and Paradigms" articl
On the basic computational structure of gene regulatory networks
Gene regulatory networks constitute the first layer of the cellular
computation for cell adaptation and surveillance. In these webs, a set of
causal relations is built up from thousands of interactions between
transcription factors and their target genes. The large size of these webs and
their entangled nature make difficult to achieve a global view of their
internal organisation. Here, this problem has been addressed through a
comparative study for {\em Escherichia coli}, {\em Bacillus subtilis} and {\em
Saccharomyces cerevisiae} gene regulatory networks. We extract the minimal core
of causal relations, uncovering the hierarchical and modular organisation from
a novel dynamical/causal perspective. Our results reveal a marked top-down
hierarchy containing several small dynamical modules for \textit{E. coli} and
\textit{B. subtilis}. Conversely, the yeast network displays a single but large
dynamical module in the middle of a bow-tie structure. We found that these
dynamical modules capture the relevant wiring among both common and
organism-specific biological functions such as transcription initiation,
metabolic control, signal transduction, response to stress, sporulation and
cell cycle. Functional and topological results suggest that two fundamentally
different forms of logic organisation may have evolved in bacteria and yeast.Comment: This article is published at Molecular Biosystems, Please cite as:
Carlos Rodriguez-Caso, Bernat Corominas-Murtra and Ricard V. Sole. Mol.
BioSyst., 2009, 5 pp 1617--171
- …
