
Math j Bio
Combining a Toggle Switc
h and a Repressilator
within the AC-DC Circuit Generates Distinct
Dynamical Behaviors
Graphical Abstract
X
Z

Y

X

Z

X
Z

Y

Repressilator AC-DCBistable switch

+

+

+

=

=

=

E
xp

re
ss

io
n

Signal

E
xp

re
ss

io
n

Signal

E
xp

re
ss

io
n

Signal

Coherence control Excitable behaviour

time

E
xp

re
ss

io
n

Highlights
d The AC-DC circuit shows robust coexistence between

oscillatory and steady expression

d The circuit allows control over the coherence of oscillations in

a cell population

d The circuit shows excitable properties, allowing the spatial

propagation of signals

d These suggest its prominence in development and its

potential in synthetic biology
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In Brief

The AC-DC circuit, formed by the

combination of a repressilator and a

toggle switch, is explored in detail using

dynamical systems theory and stochastic

simulations. These analyses reveal that

the coexistence of oscillatory and stable

gene expression gives rise to novel

dynamical behaviors such as control of

oscillation coherence and spatial signal

propagation.
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SUMMARY

Although the structure of a genetically encoded
regulatory circuit is an important determinant of its
function, the relationship between circuit topology
and the dynamical behaviors it can exhibit is not
well understood. Here, we explore the range of be-
haviors available to the AC-DC circuit. This circuit
consists of three genes connected as a combination
of a toggle switch and a repressilator. Using dynam-
ical systems theory, we show that the AC-DC circuit
exhibits both oscillations and bistability within the
same region of parameter space; this generates
emergent behaviors not available to either the toggle
switch or the repressilator alone. The AC-DC circuit
can switch on oscillations via two distinct mecha-
nisms, one of which induces coherence into ensem-
bles of oscillators. In addition, we show that in the
presence of noise, the AC-DC circuit can behave as
an excitable system capable of spatial signal propa-
gation or coherence resonance. Together, these
results demonstrate how combinations of simple
motifs can exhibit multiple complex behaviors.

INTRODUCTION

Genetic circuits regulate biological functions in contexts

that range from embryonic development to tissue homeostasis

(Davidson, 2010). Accordingly, the analysis of the repertoire of

functions performed by genetic circuits is central to systems

biology. In some cases there is a direct relationship between the

structure and operation of a circuit, such that the function—the

dynamical behavior—of a circuit is evident from its topology.

This has led to the classification of motifs or subnetworks based

on topology and motivated the design and fabrication of artificial

circuits with functions that include toggle switches, band-pass

filters, memory devices, logic gates, and oscillators (Gardner
Cell Systems 6, 521–530, A
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et al., 2000; Elowitz and Leibler, 2000; Basu et al., 2005; Sohka

et al., 2009; Ajo-Franklin et al., 2007; Siuti et al., 2013). Engineered

versions of these circuits have been used to perform computation,

screen for drugs, and detect and treat diseases (Daniel et al.,

2013; Rubens et al., 2016; Xie et al., 2016).

Nevertheless, there is not always a one-to-one correspon-

dence between topology and behavior. This is apparent from

the analysis of even small circuits. In these cases, a small modi-

fication to such a circuit, for example the change in strength of

interactions between components, leads to a qualitative change

in the behavior of the circuit (Jia et al., 2017; Del Vecchio et al.,

2008; Jayanthi et al., 2013; Tan et al., 2009; Prindle et al.,

2014; Ingram et al., 2006). Far from being a nuisance, this has

led to the concept of multifunctionality (Jiménez et al., 2017;

Purcell et al., 2011)—circuits capable of qualitatively different

outputs in a reduced parameter range. This poses the challenge

of defining and predicting circuit behavior and emphasizes the

importance of understanding themapping between the topology

of a genetic network and its dynamical behavior.

Identifying the minimal parameter changes necessary to elicit

alternative behaviors from a multifunctional circuit provides

insight into changes in behavior during gene network evolution

and could be exploited for the engineering of circuits for

synthetic biology tasks. Several studies have shed light on this

problem through extensive numerical and experimental explora-

tion of small networks targeting a specific function (Cotterell and

Sharpe, 2010; Woods et al., 2016; Jiménez et al., 2017;

Otero-Muras and Banga, 2016; Espinar et al., 2013; Schaerli

et al., 2014). Insight from such studies is often obtained after

the analysis and classification of the successful topologies in

terms of the landscape of the corresponding dynamical sys-

tem—sometimes called the geometrical landscape. The use of

this dynamical landscape is key to revealing how different

behaviors emerge, contributing to a better understanding of

the mapping of topology to function (Jia et al., 2017; Strelkowa

and Barahona, 2010; S€uel et al., 2006; Jaeger and Monk,

2014; Verd et al., 2014).

Distilling minimal easy-to-engineer networks capable of

specific functions is of paramount importance for engineering

circuits for synthetic biology tasks (Schaerli et al., 2014; Purcell
pril 25, 2018 ª 2018 The Author(s). Published by Elsevier Inc. 521
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Figure 1. The AC-DC Circuit Is the Combination of a Bistable Switch

and a Repressilator

(A) AC-DC regulatory circuit.

(B) Bifurcation diagram and network diagram for the bistable switch controlled

by a signal S. The two saddle-node bifurcations position the stability range for

the two stable solutions (black solid lines). There is bistability for intermediate

signals, where both stable solutions are separated by an unstable steady state

(dashed line). Transient trajectories (pink arrows) are sketched showing the

dynamical effect of the steady states.

(C) Bifurcation diagram and network diagram for the repressilator under a

change of parameters controlled with an external signal S. The change in

behavior is a Hopf bifurcation where a stable spiral (damped oscillations)

(thick black solid line) becomes unstable (dashed line) giving rise to stable

oscillations (shaded zone). After the bifurcation, the amplitude of the stable

oscillations (delimited by thin solid lines) grows with the signal. The two

possible oscillatory transients are sketched (pink arrows).
et al., 2010; Chau et al., 2012). Cellular resources are scarce and

implementing complex behaviors within cells requires an effi-

cient and judicious use of these (Carrera et al., 2011; Mather

et al., 2013; Cookson et al., 2011). Metabolic load affects gene

expression through growth-dependent effects (Klumpp et al.,

2009; Scott et al., 2010; Cardinale et al., 2013), and its reduction

has become a major design objective (Ceroni et al., 2015;

Borkowski et al., 2016). Minimal multifunctional circuits might

offer a potential route to this goal. It is therefore important to

find and understand the behaviors and emergent properties

that can be encoded in a reduced gene circuitry. Theoretical

and computational analyses have revealed that merely

combining modules with different functions does not necessarily

lead to additive outcomes. Conversely, in many cases, topol-

ogies capable of multifunctional behavior cannot be explained

simply as the overlap of two or more submodules (Jiménez

et al., 2017). A deeper understanding of the dynamics of multi-
522 Cell Systems 6, 521–530, April 25, 2018
functional circuits is needed. As there is ample evidence that

real biological systems exploit multifunctionality (Verd, 2016),

designing and investigating such circuits is likely to shed light

on biological processes (Mathur et al., 2017).

One attractive candidate for studying the coexistence and

emergence of behavior in a multifunctional minimal network is

the alternate current (AC)-direct current (DC) circuit (Panovska-

Griffiths et al., 2013; Balaskas et al., 2012). Composed of two

well-known subnetworks, the repressilator (Elowitz and Leibler,

2000; Purcell et al., 2010) and the toggle switch (Sokolowski

et al., 2012; Gardner et al., 2000) (Figure 1A), the AC-DC circuit

takes its name by analogy to AC and DC, since it is capable

of generating oscillatory (AC) and multistable (DC) behavior

(Panovska-Griffiths et al., 2013). The AC-DC circuit was originally

observed in the patterning of progenitors in the vertebrate

neural tube (Balaskas et al., 2012), where it is proposed to exhibit

the DC behavior. Theoretical analysis revealed the potential

for this circuit to generate oscillations inside a spatial pattern

(Panovska-Griffiths et al., 2013) and the ability of the circuit

topology to show stochastic switching between oscillations

and steady-state expression (Li et al., 2012). Furthermore,

Jaeger and colleagues have proposed that the gap gene

system, which patterns the anterior-posterior axis of the

Drosophila melanogaster embryo, is composed of three linked

AC-DC circuits, two of which operate in the DC regime and

one in the oscillatory, AC, mode (Verd, 2016).

The two subcomponents of the AC-DC circuit, the toggle

switch and the repressilator, have been intensively studied,

separately. Toggle switches consist of the cross-repression

between the determinants of different cellular states and result

in a definite choice between two outcomes. When controlled

by an external signal, the toggle switch is able to produce a sharp

transition between the steady states at a precise signal level (Fig-

ure 1B) (Sokolowski et al., 2012; Gardner et al., 2000). From a

dynamical systems point of view, the sharp switch-like transition

is the result of two saddle-node bifurcations. Each of these is

characterized by the abrupt appearance of a stable and unstable

steady expression state for a small change in the input signal. A

consequence of this dynamical scenario is that, for a range of

values of signal, both states are available and the expression

state is determined by the initial gene expression. In addition,

in the presence of noise, there is the possibility of switching

between the stable states (Song et al., 2010; Tian and Burrage,

2006; Perez-Carrasco et al., 2016; Frigola et al., 2012).

The second component of the AC-DC circuit, the repressilator,

comprises the sequential repression of three genes. In contrast

to the toggle switch this provides a negative feedback loop

that promotes stable oscillations. The amplitude and period of

these depend on the parameters of the system (Elowitz and

Leibler, 2000; Purcell et al., 2010). Changes in these parameters

can lead to the disappearance of the oscillations through a Hopf

bifurcation, in which the orbit in the expression space (limit cycle)

shrinks, giving rise to a steady expression state. Hence coupling

key parameters to an external signal can result in the repressila-

tor becoming a switchable genetic oscillator, a property that has

been extensively computationally explored (Buzzi and Llibre,

2015; Buşe et al., 2009; Purcell et al., 2010).

In this manuscript we characterize the functions of the AC-DC

circuit by analyzing the phase portrait of the dynamical system.



We find that oscillations and stable expression can coexist in a

large region of the parameter space, and we explore the implica-

tions of this coexistence. This reveals emergent behaviors not

available to the repressilator or the toggle switch individually,

which allow the circuit to be used to establish coherent or inco-

herent oscillations. In addition, we demonstrate that, with the

addition of noise, the AC-DC circuit functions as an excitable

system capable of coherence resonance and spatial signal

propagation.
RESULTS

The Model
The expression dynamics of the AC-DC circuit can be described

by taking into account the production and degradation of each

gene (X, Y, and Z), where transcription processes are assumed

to be faster than translation (Panovska-Griffiths et al., 2013).

The production rate of each gene is regulated by the genetic in-

teractions in the network and the inductive signal (S) that controls

the behavior of the network and activates genes X and Y,

_X =
aX + bXS

1+S+ ðZ=zXÞnzx
� X;

_Y =
aY + bYS

1+S+ ðX=xYÞnxy
� dYY ;

_Z =
1

1+ ðX=xZÞnxz + ðY=yZÞnyz
� dZZ:

(Equation 1)

Here all the variables and parameters are non-dimensional

(see STAR Methods). The non-dimensional basal production

rates aX and aY are relative to the basal production rate of

gene Z. The signal induction is controlled by parameters bX
and bY, while the strength and shape of the repressions are

controlled by the non-dimensional factors zX, xY, xZ, and yZ
and the exponents nzx, nxy, nxz, and nyz. Finally, the rates dZ
and dY are the relative degradation rates to the degradation of

gene X. Similarly, the time is measured in units of time of the

degradation rate of protein X.

The use of non-dimensional parameters allows for the study of

theminimal independent set of parameters required to define the

possible different dynamics of the circuit, maximizing the infor-

mation obtained for any parameter fitting of the model. In the

present case we are interested in finding a global behavior of

the AC-DC circuit without overfitting. For this reason we per-

formed a minimal parameter exploration looking for behaviors

that exhibit a transition from non-oscillatory to oscillatory

behavior through a change in the signal. In addition, we required

the Hill exponents to be as low as possible to avoid numerical

artifacts due to high nonlinearities. This would also ensure a

set of parameters achievable in synthetic circuits.

The parameter exploration was performed using approximate

Bayesian computation (Liepe et al., 2010; Liepe et al., 2014) and

gave as a result the distribution of parameters necessary for

observing a tunable oscillator in the AC-DC circuit. The resulting

parameters (Table S1) return a consistent relationship between

the parameters for different target optimizations (see STAR

Methods). Namely, the basal production rate of the different

genes has a marked hierarchy with Z being the largest, followed
by genes X and Y. By contrast, both signal activation strengths

are similar ðbXxbY Þ. In addition, the strongest repression is

that of X from Z, while the weakest is its reciprocal, from X to

Z. The repressions unique to the repressilator, xy and yz, are in

between these values. All the optimizations returned a difference

of at least one order of magnitude between the different repres-

sion magnitudes (zx < xy < yz < xz), with clear correlations

between them. Notably, a similar degradation rate was observed

for all three proteins dYxdZx1. Finally, no oscillations were

found when Hill exponents n = 2 were used, but a small increase

of only one of the Hill exponents provided sufficient non-linearity

to observe oscillations.

In addition to the deterministic model, it is also informative to

test the behavior of the AC-DC circuit subjected to molecular

intrinsic noise derived from the deterministic Equations (1)

as chemical Langevin equations (Gillespie, 2000) (see STAR

Methods). The inclusion of intrinsic noise has two purposes, it

shows the robustness of some of the functionalities to fluctua-

tions, while revealing new phenomena not available in a deter-

ministic scenario.

The AC-DC Circuit Shows Bistability between
Oscillations and Steady Expression
Analysis of the bifurcation diagram of the circuit reveals amixture

of the bistability from the toggle switch and the oscillatory

behavior of the repressilator, in a similar way to other circuits

comprising an incoherent feedback (Pfeuty and Kaneko, 2009).

The Hopf bifurcation by which the oscillations arise in the repres-

silator transforms one of the stable states of the bistable switch

into an oscillatory state that can coexist for a certain signal range

with the other stable state (Figure 2; Movies S1, S2, and S3).

Hence, for a given value of signal S both behaviors (oscillatory

or stable expression) are possible. The chosen state will depend

on the history of the system S, i.e., the system displays hystere-

sis. This behavior was present in 80% of the optimized param-

eter sets even though the parameter search optimization did

not score for any kind of bistability. This suggests that it is a

robust behavior arising from the network topology.

Overall, examining the bifurcation diagram shows that the

behavior consisted of four different dynamical regimes for

different signal ranges. For low values of the signal, there is

only one possible steady state with low expression of gene X, re-

sulting from a low activation of the promoters X and Y by the

signal. As the signal increases, the system starts to oscillate

through a Hopf bifurcation, with oscillations of small amplitude

that increases with the amount of signal. For larger values of

the signal a new stable state with high expression of X becomes

available through a saddle-node bifurcation. This new state

appears away from the limit cycle (steady oscillatory trajectory)

without affecting it, giving rise to the bistable regime between

oscillations and constant expression.

For large values of the signal the oscillations disappear. The

bifurcation analysis indicated that two different mechanisms

could be responsible for this. On the one hand, a Hopf bifurcation

may arise collapsing the limit cycle before the second saddle-

node occurs (Figure 2). On the other hand, the oscillatory state

can collide with the unstable steady state produced by the

saddle-node bifurcation, resulting in a homoclinic bifurcation,

as previously observed by (Li et al., 2012). This gives rise to a
Cell Systems 6, 521–530, April 25, 2018 523
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Figure 2. Dynamical Regimes of the AC-DC Circuit

(A) Stability diagram showing the available steady states of each gene for

different values of the signal S using the parameters of Table S1. Thick solid

lines show stable steady states, dashed lines show unstable states. Shaded

areas show the range of expression of oscillatory states, which are delimited

by thin solid lines. The bifurcation diagram was obtained using integration and

continuation techniques (Clewley, 2012). See also Figure S1.

(B) Expression of gene X in time for different signal levels exhibiting three

different dynamical regions. Initial condition is X = 0, Y = 0, Z = 0.
regime in which, even though the oscillatory state is not stable, it

readily generates oscillatory transients toward the steady state

(Figure S1). We will consider the first case for the rest of this

study; nevertheless, all the behaviors described herein are inde-

pendent of the mechanism by which the oscillations disappear.

An additional regime may appear in which two constant

expression steady states coexist for a wide range of signal, as

expected from any bistable switch (Figure 1B). The availability

of this regime depends on the location of the oscillatory region

with respect to the two saddle-node bifurcations (Figure S1).

Since our parameter exploration maximizes oscillatory behavior,

this dynamical regime was not frequent and will not be

considered in the rest of the study, which focuses instead on

the coexistence between sustained oscillations and constant

expression steady states.

Coherent or Incoherent Oscillations
One way of inducing oscillations through a change in signal is to

increase the signal from low levels to a level above theHopf bifur-

cation threshold (DS1). In addition, the coexistence of oscillations
524 Cell Systems 6, 521–530, April 25, 2018
with saddle-node bifurcations allows for an alternative way to

initiate oscillations. Starting from the stable expression state

achieved at high signal levels, the oscillatory state can be

reached by reducing the signal below the saddle-node bifurca-

tion (DS2) (see Figure 3). Whereas in the first case a small limit

cycle arises around the initial steady state, in the second

case a large amplitude limit cycle is already present within the

dynamical landscape when the bifurcation takes place. These

differences result in different dynamical transients toward the

oscillatory state.

To test these differences we performed simulations of the

stochastic model starting at low or high signal and ending at

the same intermediate signal value. Results show that in the first

scenario—increasing signal from a low value—gives rise to asyn-

chronous oscillations in a population of cells. Small differences in

the initial phase are amplified over time. By contrast, the second

scenario—decreasing signal from a high level—induces

coherent oscillations in the face of noise (Figure 3; Movies S4

and S5).

This difference in behavior is a consequence of the different

initial gene expression states in relation to oscillatory spiral cen-

ter. In a Hopf bifurcation, oscillations arise through an attracting

spiral losing its stability and becoming a repulsing spiral.

Hence, oscillations originating from a Hopf bifurcation start their

transient close to the unstable spiral center, and a small variation

in the initial condition can lead to a substantial difference in the

final oscillation phase. Small initial differences are amplified,

resulting in lack of coherence of oscillations for a population of

cells undergoing the bifurcation. By contrast, cells passing

through the saddle-node bifurcation toward the limit cycle do

so at expression levels that are far from those associated with

the attracting oscillatory regime. Consequently, they have the

same initial phase, and stochastic trajectories are canalized

together toward the oscillatory state. In this way the AC-DC

circuit, for a single set of parameters, offers the possibility to

establish either coherent or incoherent oscillations in a popula-

tion by choosing the appropriate signal transient. Specifically,

the second mechanism is not available in the original repressila-

tor since it requires the bistability provided by the toggle switch.

In addition to the synchrony of response, it is important to

note that the saddle-node bifurcation also allows the rapid

establishment of constant amplitude oscillation after the signal

is reduced. Thus, the AC-DC system offers a fast mechanism

to turn on and off the oscillations, which is not a feature of the

repressilator. Previous studies propose robust switching exploit-

ing quasi-stable oscillatory transients in repressilators with an

even number of repressions (Strelkowa and Barahona, 2010).

In contrast the AC-DC circuit exhibits the benefits of both sys-

tems, the robustness of oscillating with a stable limit cycle, and

the fast switchability, in this case provided by a bifurcation

occurring far from the central unstable spiral.

The AC-DC Circuit Shows Excitability
The long-term behavior of the deterministic system in the

bistable zone of the AC-DC circuit is determined by the initial

conditions of the system. The set of initial conditions that are

attracted to each of the two possible stable states are their

respective basins of attraction. Intrinsic fluctuations in the

expression levels allow the system to explore the basin of
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Figure 3. AC-DC Circuit Allows the Control of Oscillation Coherence between Different Cells

(A) Schematic showing the two possible transitions toward the limit cycle.

(B) Oscillations arising through the Hopf bifurcation (DS1) are incoherent. Diagrams show steady states and transients in the genetic expression plane. Initially,

there is only one stable state (solid black circle) of constant expression, the genetic expression of different cells (colored circles) is determined by this stable state.

After the signal is increased at t = ts, the steady state becomes unstable giving place to an unstable spiral center (solid white circle) and a stable limit cycle

(black circumference). The resulting dynamical behavior for the different cells (colored arrows) follows a spiral transient toward the limit cycle.

(C) Simulations ofDS1 show the appearance of oscillations that lose their coherence by increasing the signal from S = 0.1 toS = 100 at t = ts forDt = 2 (gray shaded

area), U = 106.

(D) Oscillations through the saddle-node bifurcation (DS2) are coherent. Diagrams show steady states and transients in the genetic expression plane. Initially,

expression of cells (colored circles) are found in a stable state (solid black circle) of constant expression. After the signal is increased at t = ts, the steady state

disappears from the plane (solid white circle) and the only attractor available is the limit cycle (black circumference), which imposes a fast expression transient

toward the stable oscillations (colored lines).

(E) Simulations of DS2 show the appearance of coherent oscillations by decreasing the signal from S = 105 to S = 100 at t = ts for Dt = 2 (gray shaded area),

U = 106.

(F) Comparison of the decrease in coherence in time for both signal histories DS1 and DS2 measured as ðsmax � sðtÞÞ=smax, where s is the SD of the phase of the

oscillations for 20 simulations of each mechanism and smax is the SD corresponding to completely incoherent oscillations.
attraction, or even to cross between basins, resulting in noise-

induced transitions between different cellular states (Song

et al., 2010; Jia et al., 2017). In the case of the AC-DC circuit,

the switching capabilities between oscillations and constant

expression by intrinsic noise was analyzed by (Li et al., 2012),

revealing that the frequency of switching depends on the geom-

etry of the basin and the level of intrinsic noise. Here we explore

possible effects and functionalities of this transition by altering

the signal S and intrinsic noise levels with the system volume
parameter U (see STAR Methods)(Gillespie, 2000; Perez-

Carrasco et al., 2016).

Switching between states is not equally probable for all levels

of gene expression (de la Cruz et al., 2017). In particular, once the

system jumps into the oscillatory state, at least one excursion

around the limit cycle is required before it can return to the

constant expression state (Figure 4). Such an excursion results

in the amplification of a transient fluctuation. In addition, this

excursion entails a refractory period during which the system
Cell Systems 6, 521–530, April 25, 2018 525
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Figure 4. AC-DC Circuit Shows Coherence Resonance

(A) Pulses of gene expression for three different noise levels. Themost regular pulsing occurs for intermediate noise (Ux250). Simulations performedwithS = 700.

(B) Irregularity of times between pulses as a function of noise intensity. The irregularity for each value of U is measured as the coefficient of variation of the

times between expression peaks of gene Z for trajectories during Dt = 50,000. This illustrates minimal irregularity for intermediate U. Inset: Expression levels of

genes X and Z during an activation that lasts for two pulses. Stochastic fluctuations drive the system far from the steady state (black circle) past the unstable

steady state (white circle), driving the system around the limit cycle (black orbit). Arrows show the direction of the limit cycle. U = 1,000, S = 700.
cannot be triggered again until the full cycle is finished. This pul-

satile behavior reveals the excitable nature of the AC-DC circuit.

Excitability has been found in other genetic systems where

expression pulses have been suggested to be beneficial for

the biology of the cell (S€uel et al., 2006; Levine et al., 2013). In

many cases the excitability arises from incoherent feedbacks

(Pfeuty and Kaneko, 2009). This is the case for the AC-DC circuit

where the incoherent feedback is a consequence of the super-

position of its two subcircuits—the bistable switch (positive

feedback) and the repressilator (negative feedback).

The frequency of the pulses depends on the noise intensity

and value of the signal. In situations with low noise, the system

can be trapped in the oscillatory state for more than one period

(Figure 4), leading to the spike trains studied by (Li et al., 2012),

which are similar to the spike trains observed in neuronal activity

(Lindner et al., 2004). By contrast, if intrinsic noise is increased,

the probability of observing isolated spike trains decreases.

The increase in intrinsic noise results in a greater chance of exit-

ing the limit cycle, but also a greater probability of inducing

another excitation after each refractory period. This results in

an increased regularity of the pulses as noise intensity augments.

However, with large levels of intrinsic noise the quality of the os-

cillations and refractory period is disrupted, leading to a

decrease in the regularity of the pulsing (Figure 4). Hence there

is an optimal constructive level of noise for which the spikes

become more regular. This effect, which is known as coherence

resonance, is common in excitable systems and provides a way

to exploit intrinsic noise for signal detection (Lindner et al., 2004;

Bates et al., 2014).

The excitable nature of the AC-DC circuit might also be rele-

vant to other functions, such as signal propagation in a tissue.

A cell signaling to neighboring cells can be excited to undergo

a pulse that will, in turn, excite neighboring cells and so on.

The intensity and transient and refractory periods of the pulse
526 Cell Systems 6, 521–530, April 25, 2018
not only contribute to the excitation of neighboring cells but

also inhibit the reactivation of the recently excited cells, resulting

in a spatially propagating pulse over the tissue. To test this pos-

sibility, we performed a series of numerical assays in a simulated

tissue where one or more of the proteins forming the AC-DC cir-

cuit diffuse between cells. To initiate the system, bistable cells

are set in the constant stable expression state. In this scenario,

the induced excitation of one cell leads to a propagating front

in which cells are excited sequentially, returning afterward to

the initial constant expression state (Figure 5; Movie S6). During

this period of time, the transient expression along the limit cycle

is high enough to deliver the pulse to the neighboring cells. The

width and velocity of the propagating front can be controlled

with the noise intensity or the diffusion coefficient, as well as

the signaling mechanism between cells. In addition, for a high

enough level of noise, spontaneous propagation waves can

also occur, as well as dynamical patterning of the system (see

Movies S6, S7, S8, and S9). Similar results would be expected

with more elaborate signaling pathways in which transmem-

brane receptors are involved in the transmission of the signal

(Mathur et al., 2017; Jiménez et al., 2017; Formosa-Jordan

et al., 2012).

DISCUSSION

We have explored the behavior of the multifunctional AC-DC

circuit, showing that the coexistence between bistability and

oscillations elicit novel dynamics that are unavailable to either

of its constituent parts. These provide a mechanism to rapidly

switch between a rhythmic and steady expression regime and

suggests a way in which coherent oscillations can be induced

into an ensemble of otherwise noisy oscillators. In addition, we

demonstrate the excitable dynamics of the system that result

in the potential for coherence resonance and spatial signal
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Figure 5. AC-DC Pulse Can Be Used as a

Spatial Signal Propagation in an Array of

Cells Containing the AC-DC Circuit

Proteins X, Y, and Z can diffuse intercellularly.

Cells are under signal S = 1,000 (bistable regime)

and initially set at the constant expression steady

state except one cell that is perturbed away from

the steady state. This perturbation initiates a wave

that propagates through the field. U = 105, D = 0.1

(seemore details in the Supplemental Information).
propagation. Notably, these behaviors are accessible for the

same range of parameters, supporting the idea that the circuit

represents a versatile genetically encoded network well suited

for a range of functions.

Although not apparent from the structure of the network, the

various functions of the AC-DC circuit become evident from an

inspection of the geometry of its dynamical landscape. As has

been shown in previous studies, the position and nature of the

attractors of the system provide substantially greater insight

than a simple analysis of the topology of the network (Jiménez

et al., 2017; Cotterell and Sharpe, 2010; S€uel et al., 2006;

Strelkowa and Barahona, 2010; Jia et al., 2017; Jaeger and

Monk, 2014; Verd et al., 2014; Pfeuty and Kaneko, 2009). For

the AC-DC circuit, the shape of the dynamical landscape is

created by the combination of saddle-node bifurcation arising

from the toggle switch and the Hopf bifurcation of the repressi-

lator. Moreover, transitions such as the sudden destabilization

of oscillations through the homoclinic bifurcation, can be

anticipated from examining the structure of the dynamical

landscape. This highlights the application and importance of

dynamical systems tools for identifying and explaining the

behavior of even relatively simple circuits. It also raises the

possibility that similar dynamical behaviors might be present

in other circuits composed of incoherent feedbacks that share

similar attractor landscapes (Pfeuty and Kaneko, 2009; Krishna

et al., 2009).

Besides its potential applications in synthetic biology

(see Box 1), the AC-DC circuit also offers insight into genetic

circuits involved in tissue development. During vertebrate

embryogenesis, coordinated gene expression oscillations—

the segmentation clock—in the posterior cells of the body

generate a rhythmic spatial pattern that subdivides the embry-

onic trunk into morphological segments (Hubaud and Pourquié,

2014). This involves a still poorly defined genetic oscillator within

posterior cells. Notably, individual cells appear to behave as

autonomous oscillators that, when isolated from the embryo,
C

produce transient stochastic periods of

oscillations (Webb et al., 2016). In addi-

tion, a recent experimental study has

revealed the excitable nature of such os-

cillations (Hubaud et al., 2017). This

behavior features the same properties

found in the excitable regime of the AC-

DC circuit in which a limit cycle and

steady expression state coexist, sug-

gesting that the AC-DC circuit could

provide a model for the process. In a
different tissue, the Drosophila blastoderm, the dynamics of

three linked AC-DC gene circuits have been proposed to char-

acterize the regulatory network that patterns the anterior-poste-

rior axis (Verd, 2016). In this case, the dynamical transients of

the AC-DC circuit are suggested to tune the position of the

boundaries in time. Moreover, the presence of AC-DC dynamics

in this gene network has been suggested later on to reconcile

differences between short and long germband insects (Clark,

2017). In short germband insects, rhythmic expression of genes

is associated with the gradual extension of the body axis. By

contrast in long germband insects, such asDrosophila, the trunk

is patterned simultaneously without cyclic expression of the

patterning genes. The bistability between a stable steady state

and a limit cycle and the possibilities to transition smoothly

between regimes with a change of one parameter suggests a

route for the evolutionary transition of the underlying gene-

regulatory network (Verd, 2016). In this view, the multifunction-

ality of the AC-DC circuit contributes to the evolvability of

the circuit and exemplifies how the competing demands of

biological mechanisms to be both robust and adaptable can

be satisfied. Accordingly, studies of genetically encoded cir-

cuits such as the AC-DC network provide insight into the design

principles of regulatory mechanisms that characterize biology.
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Box 1. Applications of the AC-DC Circuit in Synthetic Biology

Of particular interest for the AC-DC circuit is themultistability and the ability to control switching between the different behaviors by

changing a single external signal. The availability of wide regions of parameter space, in which these behaviors take place, makes

the AC-DC circuit an attractive target for potential applications in synthetic biology. In particular, the problem of generating syn-

chronized ensembles of oscillators is a challenge. Considerable efforts have beenmade to solve this problem either by engineering

away noise or relying on quorum sensing (McMillen et al., 2002; Garcia-Ojalvo et al., 2004; Kobayashi et al., 2004; Kuznetsov et al.,

2006; Danino et al., 2010; Nikolaev and Sontag, 2016; Potvin-Trottier et al., 2016) The AC-DC circuit offers a novel strategy that

relies on the bistable oscillatory regime, producing a favorable robust dynamical transient toward the oscillations. Moreover,

the circuit offers the possibility of exhibiting different degrees of coherence in response to a single triggering signal. This offers

a new tool for synthetic biology to control the heterogeneity of gene expression in a population of cells.

Pulsatile excitations are also a property exploited in several biological situations. The behavior is reminiscent of bet-hedging

strategies that have been proposed to optimize responses to external inputs ormaximize the use of limited resources by controlling

the time atwhich nutrient demanding physiological processes occur (Levine et al., 2013; S€uel et al., 2006; Liu et al., 2017). From this

perspective, the AC-DC circuit provides a mechanism to explore different excitable regimes by changing the external signal

without the need to control the levels of intrinsic noise by altering the copy number or degradation rates of the system (Hilborn

et al., 2012; Niederholtmeyer et al., 2015).

Moreover, the AC-DC circuit exhibits pulsatile properties. In other circuits the excitability arises from unstable excitable transients

or through a subcritical Hopf bifurcation (S€uel et al., 2006,; Hilborn et al., 2012). In the AC-DC circuit, the separation of the saddle-

node bifurcation that initiates oscillations from the amplitude of the limit cycle allows for parameterizations in which both properties

of the bistable region can be tuned independently to control the different features of the pulses. Similar distinctions are found in

excitable systems, such as those associated with neuronal action potentials (Izhikevich, 2000; Lindner et al., 2004), raising the

possibility of combining current advances in neuronal networks and excitable media with synthetic genetic circuits. In particular,

the tunability of the excitable properties allows for signal propagation across a population of cells with different velocities and

intensities that can be slower than the typical production and degradation rates of the molecular components of the circuit. In

addition, it suggests the possibility of exploiting coherence resonance for signal detection. This property results when an increase

in noise intensity produces an increased probability of crossing a critical threshold in excitable systems. In both neurological and

manufactured systems this can be used to increase the signal-to-noise ratio and therefore to enhance the detection of weak

signals (Lindner et al., 2004; Bates et al., 2014). The capacity of the AC-DC circuit for coherence resonance raises the possibility

of exploiting this feature in the design of biosensing applications in synthetic biology (Van Der Meer and Belkin, 2010).
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METHOD DETAILS

Non-dimensional Equations
The nondimensional equations [1] result from the dimensional Hill function regulation,

d ~X

d~t
=

~aX + ~bXS

1+S+
�
~Z
.
~zX

�nzx
� ~dX ~X

d ~Y

d~t
=

~aY + ~bYS

1+S+
�
~X
.
~xY

�nxy � ~dY ~Y

d ~Z

d~t
=

~aZ

1+
�
~X
.
~xZ

�nxz
+
�
~Y
.
~yZ

�nyz
� ~dZZ:

(Equation 2)

Measuring time in units of the degradation rate of protein X, all the temporal variables can be nondimensionalized as,

dY =
~dY
~dX

; dZ =
~dZ
~dX

; t = ~tdX : (Equation 3)

Similarly, concentrations and rates can be non-dimensionalized using the timescale of ~dX and the production rate ~aZ .

aX =
~aX

~aZ

; aY =
~aY

~aZ

; bX =
~bX

~aZ

; bY =
~bY

~aZ

(Equation 4)
zx =
~zx~dX
~aZ

; xy =
~xy~dX
~aZ

; xz =
~xz~dX
~aZ

; yz =
~yz~dX
~aZ

(Equation 5)
X =
~X~dX
~aZ

; Y =
~Y~dX
~aZ

; Z =
~Z~dX
~aZ

(Equation 6)

The signal S is alsomeasured in arbitrary units. Since S is a control parameter to control the dynamics properties of the system, the

results will hold for any non-linear relationship between concentration of inducer and S.

For the stochastic Chemical Langevin Equation, the parameterU relates the non-dimensional expression levels with actual number

of proteins (NX, NY, NZ) as,

NX =
X~aZU

~dX
; NY =

Y~aZU

~dX
; NZ =

Z~aZU

~dX
: (Equation 7)
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Parameter Fitting
The parameter exploration was carried out using Bayesian sampling techniques through the Approximate Bayesian Computation

(ABC) using ABC-SysBio software (Liepe et al., 2010). The score functions, dðÞ, are minimal for the optimal behavior scored. They

were designed to capture a change from stable steady state to oscillations. This was evaluated on trajectories for each parameter

set under the induction of two different signal values SDC and SAC.

First the network is induced by a low signal ðS=SDCÞ for Dt = 50. Allowing a transient of Dt = 30 (see Figure S2), after which a con-

stant response in time is scored:

dDCðXðtÞÞ=MDC + 2
maxðXðtÞÞ �minðXðtÞÞ
maxðXðtÞÞ+minðXðtÞÞ (Equation 8)

Where MDC is the number of minima found, penalising oscillations. The second term of dDC penalises transients far from a steady

expression.

The constant regime is perturbed by increasing the signal to a new value bymultiplying it by a factor s,SAC =SDCs (s > 1) applied for

Dt = 100. The factor s was also allowed to vary during the parameter exploration. During this second period, the goodness of the

oscillations was evaluated favouring large oscillation amplitudes, and penalising a non-constant amplitude in time:

dACðXðtÞ Þ=

8>><
>>:

1

MAC

+ 2 MAC<4

����
AM � AM�1

AM�1

����+ 2
minðXðtÞ Þ

maxðXðtÞ Þ+minðXðtÞ Þ MAC>4;

(Equation 9)

whereMAC is the number of maxima found after a transient of Dt = 20 region, and AM and AM�1 are the amplitudes of the last and the

previous to last full oscillations (see Figure S2). Both parameters SAC and s were treated as free parameters of the optimisation.

Finally, in order to reduce artefacts arising from the choice of high Hill exponents, all the Hill exponents were set to n = 2, varying

only one exponent that is penalised to have higher values in circuits that already have a low score,

dHillðniÞ=
8<
:

2 dAC +dDC>2����
2� ni

3

���� dAC +dDC%2
(Equation 10)

The distance used to infer the parameters used in the the current study (Table S1, and Figure S3) was,

d =dDCðXÞ+dACðXÞ+dHillðnzxÞ; (Equation 11)

where the minimisation was run for 20 generations of the ABC optimisation and the expected behavior started to arise beyond gen-

eration 10 of the ABC optimisation. To test possible overfitting resulting from the functions used, alternative functions were designed

resulting in similar results analysed during different generations of the algorithm, some examples are shown in Table S2 where,

d1 =d2
DCðYÞ+d2

ACðYÞ+d2
HillðnzxÞ; (Equation 12)
d2 =dDCðXÞ+dACðYÞ+dHill

�
nyz

�
: (Equation 13)

Stochastic Expression
The stochastic dynamics of expression was studied using the Chemical Langevin equation resulting from taking into account the sto-

chastic nature of the production and degradation events (Gillespie, 2000) as:

_X = fXðZ; SÞ � X +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2XðZ; SÞ+X2

q
xXðtÞ; (Equation 14)
_Y = fYðX; SÞ � dYY +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2YðX; SÞ+ d2YY

2

q
xYðtÞ;
_Z = fZðX;YÞ � dZZ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2ZðX; YÞ+ d2ZZ

2

q
xZðtÞ;

where fX, fY, and fZ are the production terms of equations.(1) and xi are uncorrelated white Gaussian noises of zero mean and auto-

correlation hxiðtÞxiðt0Þi = U�1dðt� t0Þ, where dðt � t0Þ is Dirac’s delta and U is the system volume, relating expression concentrations

with number of proteins.
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Cell Lattice Diffusion
Spatially extended simulations for the genetic expression propagation were carried out implementing an array of hexagonal cell

of unit length. One or more of the proteins forming the AC-DC circuit are allowed to diffuse between neighbours using a discrete

Laplacian that for gene X of the i-th cell reads

_Xi =DðhXifig � XiÞ; (Equation 15)

where D is the intercellular diffusion coefficient and h,ifig stands for the average expression of the target gene among of all the

neighbouring cells of cell i.
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