26 research outputs found

    Dark zone of the Greenland Ice Sheet controlled by distributed biologically-active impurities

    Get PDF
    Albedo?a primary control on surface melt?varies considerably across the Greenland Ice Sheet yet the specific surface types that comprise its dark zone remain unquantified. Here we use UAV imagery to attribute seven distinct surface types to observed albedo along a 25?km transect dissecting the western, ablating sector of the ice sheet. Our results demonstrate that distributed surface impurities?an admixture of dust, black carbon and pigmented algae?explain 73% of the observed spatial variability in albedo and are responsible for the dark zone itself. Crevassing and supraglacial water also drive albedo reduction but due to their limited extent, explain just 12 and 15% of the observed variability respectively. Cryoconite, concentrated in large holes or fluvial deposits, is the darkest surface type but accounts for <1% of the area and has minimal impact. We propose that the ongoing emergence and dispersal of distributed impurities, amplified by enhanced ablation and biological activity, will drive future expansion of Greenland's dark zone.publishersversionPeer reviewe

    Time‐lapse photogrammetry reveals hydrological controls of fine‐scale High‐Arctic glacier surface roughness evolution

    Get PDF
    In a warming Arctic, as glacier snowlines rise, short- to medium-term increases in seasonal bare-ice extent are forecast for the next few decades. These changes will enhance the importance of turbulent energy fluxes for surface ablation and glacier mass balance. Turbulent energy exchanges at the ice surface are conditioned by its topography, or roughness, which has been hypothesized to be controlled by supraglacial hydrology at the glacier scale. However, current understanding of the dynamics in surface topography, and the role of drainage development, remains incomplete, particularly for the transition between seasonal snow cover and well-developed, weathered bare-ice. Using time-lapse photogrammetry, we report a daily timeseries of fine (millimetre)-scale supraglacial topography at a 2 m2 plot on the Lower Foxfonna glacier, Svalbard, over two 9-day periods in 2011. We show traditional kernel-based morphometric descriptions of roughness were ineffective in describing temporal change, but indicated fine-scale albedo feedbacks at depths of ~60 mm contributed to conditioning surface topography. We found profile-based and two-dimensional estimates of roughness revealed temporal change, and the aerodynamic roughness parameter, z0, showed a 22–32% decrease from ~1 mm following the exposure of bare-ice, and a subsequent 72–77% increase. Using geostatistical techniques, we identified ‘hole effect’ properties in the surface elevation semivariograms, and demonstrated that hydrological drivers control the plot-scale topography: degradation of superimposed ice reduces roughness while the inception of braided rills initiates a subsequent development and amplification of topography. Our study presents an analytical framework for future studies that interrogate the coupling between ice surface roughness and hydro-meteorological variables and seek to improve parameterizations of topographically evolving bare-ice areas

    Variations in phototroph communities on the ablating bare-ice surface of glaciers on Brøggerhalvøya, Svalbard

    Get PDF
    During the summer ablation season, Arctic glacier surfaces host a wealth of microbial life. Here, the phototroph communities on the ablating bare-ice surface of three valley glaciers on Brøggerhalvøya, Svalbard were investigated. The communities mainly comprised seven taxa of green algae and cyanobacteria, which have been commonly reported on Arctic glaciers. Although the geographical and glaciological settings of the three studied glaciers are similar, there were differences in total phototroph biomass. The community structure was also distinctive among the glaciers: high dominance of a single taxon of green algae (Ancylonema nordenskiÜldii) for Midtre LovÊnbreen, abundant cyanobacteria for Austre Brøggerbreen, and diverse green algae for Pedersenbreen. The major soluble ions in the surface ice showed that there was no significant difference in meltwater nutrient conditions between the glaciers, but there were lower concentrations of mineral-derived ions on Midtre LovÊnbreen. Consequently, the glacier-specific mineral loading and surface hydrology are inferred to explain the contrast in bare ice algal communities between the glaciers. We hypothesize that local, glacier-specific conditions affect algal communities and the associated influences on carbon cycling and ice-surface albedo

    Illuminating the dynamic rare biosphere of the Greenland Ice Sheet's Dark Zone

    Get PDF
    Greenland's Dark Zone is the largest contiguous region of bare terrestrial ice in the Northern Hemisphere and microbial processes play an important role in driving its darkening and thereby amplifying melt and runoff from the ice sheet. However, the dynamics of these microbiota have not been fully identified. Here we present joint 16S rRNA gene and 16S rRNA (cDNA) comparison of input (snow), storage (cryoconite), and output (supraglacial stream water) habitats across the Dark Zone over the melt season. We reveal that all three Dark Zone communities have a preponderance of rare taxa exhibiting high protein synthesis potential (PSP). Furthermore, taxa with high PSP represent highly connected ‘bottlenecks’ within community structure, consistent with their roles as metabolic hubs. Finally, low abundance-high PSP taxa affiliated with Methylobacterium within snow and stream water suggest a novel role for Methylobacterium in the carbon cycle of Greenlandic snowpacks, and importantly, the export of potentially active methylotrophs to the bed of the Greenland Ice Sheet. By comparing the dynamics of bulk and potentially active microbiota in the Dark Zone of the Greenland Ice Sheet we provide novel insights into the mechanisms and impacts of the microbial colonization of this critical region of our melting planet

    Surface and subsurface hydrology of debris-covered Khumbu Glacier, Nepal, revealed by dye tracing

    Get PDF
    While the supraglacial hydrology of debris-covered glaciers is relatively well studied, almost nothing is known about how water is transported beneath the glacier surface. Here, we report the results of sixteen fluorescent dye tracing experiments conducted in April–May 2018 over the lowermost 7 km of the high-elevation, debris-covered Khumbu Glacier, Nepal, to characterise the glacier's surface and subsurface drainage system. Dye breakthroughs indicated a likely highly sinuous and channelised subsurface hydrological system draining water from the upper part of the ablation area. This flowpath was distinct from the linked chain of supraglacial ponds present along much of the glacier's lower ablation area, through which water flow was extremely slow (∼0.003 m s−1), likely reflecting the study's timing during the pre-monsoon period. Subsurface drainage pathways emerged at the glacier surface close to the terminus, and flowed into small near-surface englacial reservoirs that typically delayed meltwater transit by several hours. We observed rapid pathway changes resulting from surface collapse, indicating a further distinctive aspect of the drainage of debris-covered glaciers. We conclude that the surface and subsurface drainage of Khumbu Glacier is both distinctive and dynamic, and argue that further investigation is needed to refine the characterisation and test its regional applicability to better understand future Himalayan debris-covered glacier meltwater delivery to downstream areas

    Icescape-scale metabolomics reveals cyanobacterial and topographic control of the core metabolism of the cryoconite ecosystem of an Arctic ice cap

    Get PDF
    DATA AVAILABILITY STATEMENT : All data publicly available at DOI: 10.5281/zenodo.7669756.Glaciers host ecosystems comprised of biodiverse and active microbiota. Among glacial ecosystems, less is known about the ecology of ice caps since most studies focus on valley glaciers or ice sheet margins. Previously we detailed the microbiota of one such high Arctic ice cap, focusing on cryoconite as a microbe-mineral aggregate formed by cyanobacteria. Here, we employ metabolomics at the scale of an entire ice cap to reveal the major metabolic pathways prevailing in the cryoconite of Foxfonna, central Svalbard. We reveal how geophysical and biotic processes influence the metabolomes of its resident cryoconite microbiota. We observed differences in amino acid, fatty acid, and nucleotide synthesis across the cap reflecting the influence of ice topography and the cyanobacteria within cryoconite. Ice topography influences central carbohydrate metabolism and nitrogen assimilation, whereas bacterial community structure governs lipid, nucleotide, and carotenoid biosynthesis processes. The prominence of polyamine metabolism and nitrogen assimilation highlights the importance of recycling nitrogenous nutrients. To our knowledge, this study represents the first application of metabolomics across an entire ice mass, demonstrating its utility as a tool for revealing the fundamental metabolic processes essential for sustaining life in supraglacial ecosystems experiencing profound change due to Arctic climate change-driven mass loss.Great Britain Sasakawa Foundation; Natural Environment Research Council; Norges ForskningsrĂĽd; South Africa National Research Foundation.http://wileyonlinelibrary.com/journal/emiam2024Plant Production and Soil ScienceSDG-13:Climate actionSDG-15:Life on lan

    Supraglacial ponds regulate runoff from Himalayan debris-covered glaciers

    Get PDF
    Meltwater and runoff from glaciers in High Mountain Asia is a vital freshwater resource for one fifth of the Earth's population. Between 13% and 36% of the region's glacierized areas exhibit surface debris cover and associated supraglacial ponds whose hydrological buffering roles remain unconstrained. We present a high-resolution meltwater hydrograph from the extensively debris-covered Khumbu Glacier, Nepal, spanning a seven-month period in 2014. Supraglacial ponds and accompanying debris cover modulate proglacial discharge by acting as transient and evolving reservoirs. Diurnally, the supraglacial pond system may store >23% of observed mean daily discharge, with mean recession constants ranging from 31 to 108 hours. Given projections of increased debris-cover and supraglacial pond extent across High Mountain Asia, we conclude that runoff regimes may become progressively buffered by the presence of supraglacial reservoirs. Incorporation of these processes is critical to improve predictions of the region's freshwater resource availability and cascading environmental effects downstream

    Temporal Variability of Surface Reflectance Supersedes Spatial Resolution in Defining Greenland&rsquo;s Bare-Ice Albedo

    No full text
    Ice surface albedo is a primary modulator of melt and runoff, yet our understanding of how reflectance varies over time across the Greenland Ice Sheet remains poor. This is due to a disconnect between point or transect scale albedo sampling and the coarser spatial, spectral and/or temporal resolutions of available satellite products. Here, we present time-series of bare-ice surface reflectance data that span a range of length scales, from the 500 m for Moderate Resolution Imaging Spectrometer&rsquo;s MOD10A1 product, to 10 m for Sentinel-2 imagery, 0.1 m spot measurements from ground-based field spectrometry, and 2.5 cm from uncrewed aerial drone imagery. Our results reveal broad similarities in seasonal patterns in bare-ice reflectance, but further analysis identifies short-term dynamics in reflectance distribution that are unique to each dataset. Using these distributions, we demonstrate that areal mean reflectance is the primary control on local ablation rates, and that the spatial distribution of specific ice types and impurities is secondary. Given the rapid changes in mean reflectance observed in the datasets presented, we propose that albedo parameterizations can be improved by (i) quantitative assessment of the representativeness of time-averaged reflectance data products, and, (ii) using temporally-resolved functions to describe the variability in impurity distribution at daily time-scales. We conclude that the regional melt model performance may not be optimally improved by increased spatial resolution and the incorporation of sub-pixel heterogeneity, but instead, should focus on the temporal dynamics of bare-ice albedo
    corecore