22 research outputs found

    GJB2 Gene Mutations in Syndromic Skin Diseases with Sensorineural Hearing Loss.

    Get PDF
    The GJB2 gene is located on chromosome 13q12 and it encodes the connexin 26, a transmembrane protein involved in cell-cell attachment of almost all tissues. GJB2 mutations cause autosomal recessive (DFNB1) and sometimes dominant (DFNA3) non-syndromic sensorineural hearing loss. Moreover, it has been demonstrated that connexins are involved in regulation of growth and differentiation of epidermis and, in fact, GJB2 mutations have also been identified in syndromic disorders with hearing loss associated with various skin disease phenotypes. GJB2 mutations associated with skin disease are, in general, transmitted with a dominant inheritance pattern. Nonsyndromic deafness is caused prevalently by a loss-of-function, while literature evidences suggest for syndromic deafness a mechanism based on gain-of-function. The spectrum of skin manifestations associated with some mutations seems to have a very high phenotypic variability. Why some mutations can lead to widely varying cutaneous manifestations is poorly understood and in particular, the reason why the skin disease-deafness phenotypes differ from each other thus remains unclear. This review provides an overview of recent findings concerning pathogenesis of syndromic deafness imputable to GJB2 mutations with an emphasis on relevant clinical genotype-phenotype correlations. After describing connexin 26 fundamental characteristics, the most relevant and recent information about its known mutations involved in the syndromic forms causing hearing loss and skin problems are summarized. The possible effects of the mutations on channel expression and function are discussed

    Phenotypic and genetic characterization of a family carrying two Xq21.1-21.3 interstitial deletions associated with syndromic hearing loss

    Get PDF
    Sensorineural hearing impairment is a common pathological manifestation in patients affected by X-linked intellectual disability. A few cases of interstitial deletions at Xq21 with several different phenotypic characteristics have been described, but to date, a complete molecular characterization of the deletions harboring disease-causing genes is still missing. Thus, the aim of this study is to realize a detailed clinical and molecular analysis of a family affected by syndromic X-linked hearing loss with intellectual disability

    Pollinator-flower interactions in gardens during the covid 19 pandemic lockdown of 2020

    Get PDF
    During the main COVID-19 global pandemic lockdown period of 2020 an impromptu set of pollination ecologists came together via social media and personal contacts to carry out standardised surveys of the flower visits and plants in gardens. The surveys involved 67 rural, suburban and urban gardens, of various sizes, ranging from 61.18° North in Norway to 37.96° South in Australia, resulting in a data set of 25,174 rows, with each row being a unique interaction record for that date/site/plant species, and comprising almost 47,000 visits to flowers, as well as records of flowers that were not visited by pollinators, for over 1,000 species and varieties belonging to more than 460 genera and 96 plant families. The more than 650 species of flower visitors belong to 12 orders of invertebrates and four of vertebrates. In this first publication from the project, we present a brief description of the data and make it freely available for any researchers to use in the future, the only restriction being that they cite this paper in the first instance. The data generated from these global surveys will provide scientific evidence to help us understand the role that private gardens (in urban, rural and suburban areas) can play in conserving insect pollinators and identify management actions to enhance their potential

    SCREENING OF DEAFNESS SUBJECTS:MOLECULAR AND FUNCTIONAL CHARACTERIZATION

    Get PDF
    Gap junction intercellular communication(GJIC) represents an important class of contact-dependent signaling. In vertebrates, gap junctions are made up of a multi-gene family called Connexins (Cxs). Gap junctions are specialized regions of the plasma membrane in which hexameric oligomers, called connexons, dock end-to-end non-covalently across the narrow extracellular gap. In particular Gap Junction Beta Protein 2 (GJB2) encoding Cx26 protein is expressed in several tissues. In the inner ear the Cx26 protein is found in nonsensory epithelial cells surrounding the hair cells, which include supporting cells of the organ of Corti, inner sulcus cells and other structures. Several studies demonstrated that GJB2 mutations are linked to Sensorineural Hearing Loss (SNHL, both dominant and recessive form. Hearing impairment is a sensory disability that affects millions of people all over the world and is the most common connexin-related disease. The aims of this study is to understand the pathophysiological mechanism underlying hearing loss, to characterize novel variations identified and to effectuate a genotype-phenotype correlation in patients from Campania region with sporadic and familial deafness

    Effects of hyperglycemia on sperm and testicular cells of Goto-Kakizaki and streptozotocin-treated rat models for diabetes

    Get PDF
    Diabetes mellitus is a degenerative disease that has deleterious effects on male reproductive function, possibly through an increase in oxidative stress. This study was conducted in order to clarify the mechanisms by which oxidative stress influences animal models for both type 1 (streptozotocin-treated rats, STZ) and type 2 (Goto-Kakizaki (GK) rats) diabetes. We determined the extent of lipid peroxidation, protein oxidation, lactate levels, adenine nucleotides, adenylate energy charge and the activity of glutathione peroxidase, glutathione reductase and lactate dehydrogenase, in isolated testicular cells of control and diabetic rats. We have also correlated these parameters with sperm count and motility. Sperm concentration and motility were decreased in STZ-treated rats. ATP levels were lower in rats treated with STZ for 3 months, in contrast to GK and rats treated with STZ for 1 month, suggesting an adaptative response. STZ-treated rats showed increased lipid peroxidation after 1 week and 3 months of treatment. Glutathione reductase (G-red) activity was found to be higher in GK rats. Glutathione peroxidase activity was lower in GK and rats treated with STZ for 1 month, which is in accordance with the proposal of functional recovery in these animals. We conclude that hyperglycemia has an adverse effect in sperm concentration and motility via changes in energy production and free radical management. Furthermore, both animal models, particularly GK rats and rats treated with STZ for 1 month, present some metabolic adaptations, increasing the efficiency of mitochondrial ATP production, in order to circumvent the deleterious effects promoted by the disease.http://www.sciencedirect.com/science/article/B6TCM-4KGG1JC-3/1/ef32e32a0e693da1e3560c5e55207b7
    corecore