766 research outputs found
Development of a Time Projection Chamber Using Gas Electron Multipliers (GEM-TPC)
We developed a prototype time projection chamber using gas electron
multipliers (GEM-TPC) for high energy heavy ion collision experiments. To
investigate its performance, we conducted a beam test with 3 kinds of gases
(Ar(90%)-CH4(10%), Ar(70%)-C2H6(30%) and CF4). Detection efficiency of 99%, and
spatial resolution of 79 m in the pad-row direction and 313 m in the
drift direction were achieved. The test results show that the GEM-TPC meets the
requirements for high energy heavy ion collision experiments. The configuration
and performance of the GEM-TPC are described.Comment: 18 pages, 12 figures, published online in Nucl. Instr. and Meth.
Development of a triple GEM UV-photon detector operated in pure CF4 for the PHENIX experiment
Results obtained with a triple GEM detector operated in pure CF4 with and
without a reflective CsI photocathode are presented. The detector operates in a
stable mode at gains up to 10^4. A deviation from exponential growth starts to
develop when the total charge exceeds ~ 4 10^6 e leading to gain saturation
when the total charge is ~ 2 10^7 e and making the structure relatively robust
against discharges. No aging effects are observed in the GEM foils after a
total accumulated charge of ~ 10 mC/cm^2 at the anode. The ion back-flow
current to the reflective photocathode is comparable to the electron current to
the anode. However, no significant degradation of the CsI photocathode is
observed for a total ion back-flow charge of ~ 7 mC/cm^2.Comment: 14 pages, 11 figures, Submitted to NIM
The ZEUS Forward Plug Calorimeter with Lead-Scintillator Plates and WLS Fiber Readout
A Forward Plug Calorimeter (FPC) for the ZEUS detector at HERA has been built
as a shashlik lead-scintillator calorimeter with wave length shifter fiber
readout. Before installation it was tested and calibrated using the X5 test
beam facility of the SPS accelerator at CERN. Electron, muon and pion beams in
the momentum range of 10 to 100 GeV/c were used. Results of these measurements
are presented as well as a calibration monitoring system based on a Co
source.Comment: 38 pages (Latex); 26 figures (ps
The degradation of p53 and its major E3 ligase Mdm2 is differentially dependent on the proteasomal ubiquitin receptor S5a.
p53 and its major E3 ligase Mdm2 are both ubiquitinated and targeted to the proteasome for degradation. Despite the importance of this in regulating the p53 pathway, little is known about the mechanisms of proteasomal recognition of ubiquitinated p53 and Mdm2. In this study, we show that knockdown of the proteasomal ubiquitin receptor S5a/PSMD4/Rpn10 inhibits p53 protein degradation and results in the accumulation of ubiquitinated p53. Overexpression of a dominant-negative deletion of S5a lacking its ubiquitin-interacting motifs (UIM)s, but which can be incorporated into the proteasome, also causes the stabilization of p53. Furthermore, small-interferring RNA (siRNA) rescue experiments confirm that the UIMs of S5a are required for the maintenance of low p53 levels. These observations indicate that S5a participates in the recognition of ubiquitinated p53 by the proteasome. In contrast, targeting S5a has no effect on the rate of degradation of Mdm2, indicating that proteasomal recognition of Mdm2 can be mediated by an S5a-independent pathway. S5a knockdown results in an increase in the transcriptional activity of p53. The selective stabilization of p53 and not Mdm2 provides a mechanism for p53 activation. Depletion of S5a causes a p53-dependent decrease in cell proliferation, demonstrating that p53 can have a dominant role in the response to targeting S5a. This study provides evidence for alternative pathways of proteasomal recognition of p53 and Mdm2. Differences in recognition by the proteasome could provide a means to modulate the relative stability of p53 and Mdm2 in response to cellular signals. In addition, they could be exploited for p53-activating therapies. This work shows that the degradation of proteins by the proteasome can be selectively dependent on S5a in human cells, and that this selectivity can extend to an E3 ubiquitin ligase and its substrate
Position Reconstruction in Drift Chambers operated with Xe, CO2 (15%)
We present measurements of position and angular resolution of drift chambers
operated with a Xe,CO(15%) mixture. The results are compared to Monte Carlo
simulations and important systematic effects, in particular the dispersive
nature of the absorption of transition radiation and non-linearities, are
discussed. The measurements were carried out with prototype drift chambers of
the ALICE Transition Radiation Detector, but our findings can be generalized to
other drift chambers with similar geometry, where the electron drift is
perpendicular to the wire planes.Comment: 30 pages, 18 figure
Space charge in drift chambers operated with the Xe,CO2(15%) mixture
Using prototype modules of the ALICE Transition Radiation Detector we
investigate space charge effects and the dependence of the pion rejection
performance on the incident angle of the ionizing particle. The average pulse
height distributions in the drift chambers operated with the Xe,CO2(15%)
mixture provide quantitative information on the gas gain reduction due to space
charge accumulating during the drift of the primary ionization. Our results
demonstrate that the pion rejection performance of a TRD is better for tracks
which are not at normal incidence to the anode wires. We present detailed
simulations of detector signals, which reproduce the measurements and lend
strong support to our interpretation of the measurements in terms of space
charge effects.Comment: 18 pages, 10 figures, accepted for publication in Nucl.Instrum.Meth.
A. Data files available at http://www-alice.gsi.de/tr
Energy loss of pions and electrons of 1 to 6 GeV/c in drift chambers operated with Xe,CO2(15%)
We present measurements of the energy loss of pions and electrons in drift
chambers operated with a Xe,CO2(15%) mixture. The measurements are carried out
for particle momenta from 1 to 6 GeV/c using prototype drift chambers for the
ALICE TRD. Microscopic calculations are performed using input parameters
calculated with GEANT3. These calculations reproduce well the measured average
and most probable values for pions, but a higher Fermi plateau is required in
order to reproduce our electron data. The widths of the measured distributions
are smaller for data compared to the calculations. The electron/pion
identification performance using the energy loss is also presented.Comment: 15 pages, 10 figures, accepted for publication in Nucl.Instrum.Meth.
2,6-Diaminopyridinium 2-carboxybenzoate
In the crystal of the title molecular salt, C5H8N3
+·C8H5O4
−, the diaminopyridine cation and the phthalate anion are linked by a pair of N—H⋯O hydrogen bonds. Within the phthalate anion, an almost symmetrical O—H⋯O hydrogen bond is observed. The ion pairs are linked by further N—H⋯O hydrogen bonds, generating a two-dimensional network lying parallel to (10)
SPOP Promotes Ubiquitination and Degradation of the ERG Oncoprotein to Suppress Prostate Cancer Progression
The ERG gene is fused to TMPRSS2 in approximately 50% of prostate cancers (PrCa), resulting in its overexpression. However, whether this is the sole mechanism underlying ERG elevation in PrCa is currently unclear. Here we report that ERG ubiquitination and degradation are governed by the Cullin 3-based ubiquitin ligase SPOP and that deficiency in this pathway leads to aberrant elevation of the ERG oncoprotein. Specifically, we find that truncated ERG (ΔERG), encoded by the ERG fusion gene, is stabilized by evading SPOP-mediated destruction, whereas prostate cancer-associated SPOP mutants are also deficient in promoting ERG ubiquitination. Furthermore, we show that the SPOP/ERG interaction is modulated by CKI-mediated phosphorylation. Importantly, we demonstrate that DNA damage drugs, topoisomerase inhibitors, can trigger CKI activation to restore the SPOP/ΔERG interaction and its consequent degradation. Therefore, SPOP functions as a tumor suppressor to negatively regulate the stability of the ERG oncoprotein in prostate cancer
- …