443 research outputs found

    Chemical resistance of the gram-negative bacteria to different sanitizers in a water purification system

    Get PDF
    BACKGROUND: Purified water for pharmaceutical purposes must be free of microbial contamination and pyrogens. Even with the additional sanitary and disinfecting treatments applied to the system (sequential operational stages), Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas alcaligenes, Pseudomonas picketti, Flavobacterium aureum, Acinetobacter lowffi and Pseudomonas diminuta were isolated and identified from a thirteen-stage purification system. To evaluate the efficacy of the chemical agents used in the disinfecting process along with those used to adjust chemical characteristics of the system, over the identified bacteria, the kinetic parameter of killing time (D-value) necessary to inactivate 90% of the initial bioburden (decimal reduction time) was experimentally determined. METHODS: Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas alcaligenes, Pseudomonas picketti, Flavobacterium aureum, Acinetobacter lowffi and Pseudomonas diminuta were called in house (wild) bacteria. Pseudomonas diminuta ATCC 11568, Pseudomonas alcaligenes INCQS , Pseudomonas aeruginosa ATCC 15442, Pseudomonas fluorescens ATCC 3178, Pseudomonas picketti ATCC 5031, Bacillus subtilis ATCC 937 and Escherichia coli ATCC 25922 were used as 'standard' bacteria to evaluate resistance at 25°C against either 0.5% citric acid, 0.5% hydrochloric acid, 70% ethanol, 0.5% sodium bisulfite, 0.4% sodium hydroxide, 0.5% sodium hypochlorite, or a mixture of 2.2% hydrogen peroxide (H(2)O(2)) and 0.45% peracetic acid. RESULTS: The efficacy of the sanitizers varied with concentration and contact time to reduce decimal logarithmic (log(10)) population (n cycles). To kill 90% of the initial population (or one log(10 )cycle), the necessary time (D-value) was for P. aeruginosa into: (i) 0.5% citric acid, D = 3.8 min; (ii) 0.5% hydrochloric acid, D = 6.9 min; (iii) 70% ethanol, D = 9.7 min; (iv) 0.5% sodium bisulfite, D = 5.3 min; (v) 0.4% sodium hydroxide, D = 14.2 min; (vi) 0.5% sodium hypochlorite, D = 7.9 min; (vii) mixture of hydrogen peroxide (2.2%) plus peracetic acid (0.45%), D = 5.5 min. CONCLUSION: The contact time of 180 min of the system with the mixture of H(2)O(2)+ peracetic acid, a total theoretical reduction of 6 log(10 )cycles was attained in the water purified storage tank and distribution loop. The contact time between the water purification system (WPS) and the sanitary agents should be reviewed to reach sufficient bioburden reduction (over 6 log(10))

    A theoretical introduction to “Combinatory SYBR¼Green qPCR Screening”, a matrix-based approach for the detection of materials derived from genetically modified plants

    Get PDF
    The detection of genetically modified (GM) materials in food and feed products is a complex multi-step analytical process invoking screening, identification, and often quantification of the genetically modified organisms (GMO) present in a sample. “Combinatory qPCR SYBR¼Green screening” (CoSYPS) is a matrix-based approach for determining the presence of GM plant materials in products. The CoSYPS decision-support system (DSS) interprets the analytical results of SYBR¼GREEN qPCR analysis based on four values: the Ct- and Tm values and the LOD and LOQ for each method. A theoretical explanation of the different concepts applied in CoSYPS analysis is given (GMO Universe, “Prime number tracing”, matrix/combinatory approach) and documented using the RoundUp Ready soy GTS40-3-2 as an example. By applying a limited set of SYBR¼GREEN qPCR methods and through application of a newly developed “prime number”-based algorithm, the nature of subsets of corresponding GMO in a sample can be determined. Together, these analyses provide guidance for semi-quantitative estimation of GMO presence in a food and feed product

    A novel pathway for efficient characterisation of additively manufactured thermoplastic elastomers

    Get PDF
    Thermoplastic elastomers (TPE) are commonly used to fabricate structures for application in repeatable, energy absorption environments. The emergence of additive manufacturing (AM) means scope now exists to design and build complex TPE components that can mechanically outperform traditionally manufactured equivalents. The ability to efficiently characterize these new TPE AM materials is, however, a barrier preventing wider industrial uptake. This study aims to establish a novel pathway for efficiently characterizing materials used in transient, dynamic applications, to ultimately enable accurate finite element (FE) simulation. A laser sintered TPE powder was characterised by performing low, intermediate and high rate uniaxial tension tests, plus planar and equibiaxial loading states. These data demonstrated significantly different behaviour across strain rates and deformation modes, necessitating fit of an augmented hyperelastic and linear viscoelastic model. FE software was then used to calibrate material model coefficients, with their validity evaluated by comparing the simulated and experimental behaviour of the material in isolated (uniaxial tensile) and mixed modal (lattice-based impact) deformation states. Close correlation demonstrated this novel approach efficiently generated valid material model coefficients, removing a barrier to industry adopting these materials. This creates opportunity to exploit these new technologies for the design optimization and fabrication of high-performance component

    A comparison of repaired, remanufactured and new compressors used in Western Australian small- and medium-sized enterprises in terms of global warming

    Get PDF
    Repaired compressors are compared with remanufactured and new compressors in terms of economic andenvironmental benefits. A detailed life cycle assessment has been carried out for compressors under threemanufacturing strategies: repaired, remanufactured and new equipment. The life cycle assessment of the globalwarming potential of repaired compressors varies from 4.38 to 119 kg carbon dioxide equivalent (CO2-e),depending on the type of components replaced. While greenhouse gas emissions from the remanufacturedcompressors (110 to 168 kg CO2-e) are relatively higher than those from the repaired ones (4.4 to 119 kg CO2-e), anew compressor has been found to produce a larger amount of greenhouse gas emissions (1,590 kg CO2-e)compared to both repaired and remanufactured compressors. Repairing failed compressors has been found to offerend users both dollar and carbon savings in contrast to remanufactured and new compressors. The research alsofound that extended lifetime is more important than the manufacturing processes in terms of greenhouse gasemissions. Since a remanufactured compressor offers a longer life than a repaired compressor, the replacement ofthe latter with the former can avoid 33% to 66% of the greenhouse gas emissions associated with a newcompressor production with a lifetime of 15 to 25 years

    Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing

    Get PDF
    Lack of assurance of quality with additively manufactured (AM) parts is a key technological barrier that prevents manufacturers from adopting AM technologies, especially for high-value applications where component failure cannot be tolerated. Developments in process control have allowed significant enhancement of AM techniques and marked improvements in surface roughness and material properties, along with a reduction in inter-build variation and the occurrence of embedded material discontinuities. As a result, the exploitation of AM processes continues to accelerate. Unlike established subtractive processes, where in-process monitoring is now commonplace, factory-ready AM processes have not yet incorporated monitoring technologies that allow discontinuities to be detected in process. Researchers have investigated new forms of instrumentation and adaptive approaches which, when integrated, will allow further enhancement to the assurance that can be offered when producing AM components. The state-of-the-art with respect to inspection methodologies compatible with AM processes is explored here. Their suitability for the inspection and identification of typical material discontinuities and failure modes is discussed with the intention of identifying new avenues for research and proposing approaches to integration into future generations of AM systems
    • 

    corecore