View metadata, citation and similar papers at core.ac.uk

Kaiya et al. SpringerPlus 2013, 2:310
http://www.springerplus.com/content/2/1/310

-

P
brought to you by i CORE

provided by Crossref

® SpringerPlus

a SpringerOpen Journal

RESEARCH Open Access

Spectrum analysis on quality requirements
consideration in software design documents

Haruhiko Kaiya“, Masahiro Umemura, Shinpei Ogata and Kenji Kaijiri

Abstract

Traceability

Software quality requirements defined in the requirements analysis stage should be implemented in the final
products, such as source codes and system deployment. To guarantee this meta-requirement, quality requirements
should be considered in the intermediate stages, such as the design stage or the architectural definition stage. We
propose a novel method for checking whether quality requirements are considered in the design stage. In this
method, a technique called “spectrum analysis for quality requirements” is applied not only to requirements
specifications but also to design documents. The technique enables us to derive the spectrum of a document, and
quality requirements considerations in the document are numerically represented in the spectrum. We can thus
objectively identify whether the considerations of quality requirements in a requirements document are adapted to
its design document. To validate the method, we applied it to commercial software systems with the help of a
supporting tool, and we confirmed that the method worked well.

Keywords: Software engineering; Requirements analysis; Quality requirements; Software design document;

Introduction

In the same way as functional requirements, quality
requirements, such as security, usability, reliability, and
efficiency should be defined at the requirements defi-
nition stage because these requirements are the dom-
inant factor in development costs and efforts. How to
define quality requirements completely and correctly is
thus well studied (Kaiya et al. 2010a; Firesmith 2005;
Zhang et al. 2008). However, we have no standard ways to
confirm such quality requirements are adapted in upcom-
ing software artifacts such as design documents or test
cases. For functional requirements, traditional stepwise
refinement techniques can be used for this purpose. At
the last stage of software development, we can confirm
whether quality requirements are adapted and imple-
mented through testing. It is, however, too late to find
incorrect or missing quality requirements in software
implementation at this stage because the design and/or
codes would need to be revised. We thus have to develop

*Correspondence: kaiya@shinshu-u.acjp
Department of Computer Science, Shinshu University, 380-8553, Nagano,
Japan

@ Springer

a method for validating quality requirements considera-
tions in intermediate software artifacts, such as design
documents.

In this paper, we propose and evaluate this method.
We use a technique called “spectrum analysis for qual-
ity requirements” (Kaiya et al. 2008) to construct this
method. The contributions of the method are as follows.
First, software engineers can become aware of missing
and/or incorrect quality requirements considerations in a
design document even if such considerations are scattered
over the document. Second, the software engineers can
narrow down the parts of the design document containing
the missing and/or incorrect quality requirements. Third,
the method can be applied almost automatically because
domain knowledge can be reused for spectrum analysis.
Fourth, the method can be applied to most requirements
and design documents because it does not require spe-
cific notations such as mathematical equations but that
the documents be written in natural language. Fifth, the
method can be applied to a wide range of development
styles such as waterfall or spiral styles because it does not
give any constraints on the ordering of software develop-
ment. A CASE tool was developed for supporting analysts
in performing this method.

© 2013 Kaiya et al,; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

https://core.ac.uk/display/209064478?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Kaiya et al. SpringerPlus 2013, 2:310
http://www.springerplus.com/content/2/1/310

The rest of this paper is organized as follows. In
the section “Spectrum analysis’, we briefly introduce the
“Spectrum analysis for software quality requirements”
technique used to analyze software quality requirements
in a document. We then propose the method for val-
idating quality requirements considerations in a design
document in the section “Method”. By using our method,
we assume we can apply our spectrum analysis from the
section “Spectrum analysis” to a design document. To
apply this analysis to a design document efficiently, a
supporting tool is crucial because the size of such a doc-
ument is not so small. In the section “Supporting tool’,
we explain the supporting tool, and how to use it about a
design document. We then confirm the assumption that
the spectrum analysis can be applied to a design document
in the section “Preliminary evaluation” by comparing the
result of an analysis performed by an expert in commer-
cial systems with the result obtained by the method. In
the section “Evaluation’, we show an evaluation to con-
firm that the method works well. We finally review related
works, summarize our current results, and show future
problems.

Spectrum analysis

Spectrum analysis for quality requirements is one mea-
surement technique for summarizing quality features
scattered over a requirements document. The technique
enables us to visualize quality characteristics in the same
way as sound waves. We explain how to perform this anal-
ysis by using the example in Figure 1. In the figure, there is
a list of requirements and a list of quality characteristics.
These two lists are the inputs of the technique. An ana-
lyst decides the quality characteristics related to each

Page 2 of 14

requirement. For example, requirement #3 is related to
both resource efficiency and changeability. After that, the
analyst counts the number of requirements related to each
quality characteristic. For example, resource efficiency is
related to three out of five requirements. The counted
number of each quality characteristic lets us know how
often each quality characteristic is mentioned in a require-
ments document. We confirmed that the importance of
each quality characteristic was reflected in the number
(Kaiya et al. 2012). We call the number the “power” of a
quality characteristic. To normalize the power, it is divided
by the total number of requirements. For example, in
this figure, resource efficiency is more important than the
others because it is frequently mentioned in the list of
requirements. We may give some weights to each require-
ment on the basis of the priority among the requirements.
We may also reformat a requirements document (Ncube
et al. 2007) if the document is highly structured like i* or
KAOS goal models.

We can maintain the traceability links between the
power of a quality requirement in a spectrum and require-
ments because the power is derived from the require-
ments. For example in Figure 1, the power of resource
efficiency is derived from requirements #1, #2 and #3.
When we want to know the reasons for the differences
between two spectra, we simply trace the links mentioned
above. The spectrum analysis for quality requirements
only focuses on the type of quality requirements. It can-
not handle the value and/or level of quality requirements.
For example, it can detect whether a quality requirement
related to resource efficiency is considered in a document.
An example of such a quality requirement is “the number
of users” However, it cannot decide whether the number

Requirements

Func. Req. of a browser

1. bookmark shall bee—|
supported.

2. offline browsing
shall be supportﬁey

3. fonts shall be a 6‘6
be changed.

4. printing shall be

supported.
5. digital signature

shall be accepted. V

- Tomod

Figure 1 Example of spectrum analysis for requirements.

Quality Characteristics

ISO9126 characteristics

> Resource efficiency
¢+ Changeability

¢ Interoperability

l# Security

3/5

/5

T

Resource Change Interop. Security

Kaiya et al. SpringerPlus 2013, 2:310
http://www.springerplus.com/content/2/1/310

itself (e.g., 10, 100 or 10000 people) is correctly considered
in a document. For this kind of decision on the value/level
of quality requirements, specific methods are required
for each type of quality requirements. This is one of the
limitations of our spectrum analysis.

Establishing the relationships between requirements
and quality characteristics in Figure 1 is not an easy task.
To help, a term-characteristics map (TCM) was proposed,
and its effectiveness was validated (Kaiya et al. 2010a).
The TCM is a matrix between terms and quality char-
acteristics defined in each problem domain. By looking
up the TCM, the relationships in Figure 1 can be easily
established because an analyst simply needs to check the
occurrences of terms in each requirement. Developing a
TCM is not easy task as well. We develop a TCM in a
domain by gathering the results of a spectrum analysis. If
sentences containing the term “xxx” are frequently related
to a quality characteristic such as “security,” we develop a
TCM containing the data that “xxx” is related to “security”.
We empirically validated that the confidence of the TCM
in each domain increases when the number of the results
of the spectrum analysis increase (Kaiya et al. 2011).

Method

In this section, we introduce the method for confirming
quality requirements considerations in a design document
by using spectrum analysis.

Overview

Figure 2 shows the overview of the method. In the
method, spectrum analysis is first applied to the require-
ments and design respectively. We then compare one

Page 3 of 14

spectrum with another to identify quality characteris-
tics defined incorrectly and/or incompletely. In Figure 2,
“Qbility” seems to be defined incompletely in design
because the power of “Qbility” in the design spectrum is
smaller than that in the requirements spectrum. “Sbility”
seems to be defined incorrectly in the design because the
power of “Sbility” in the design spectrum is larger than
the power in the requirements. Because we can find meth-
ods (functions in desgin) related to each characteristic on
the basis of the relationships between characteristics and
methods, we can investigate the causes of such incom-
pleteness and/or incorrectness. We explain each step in
this method below.

Spectrum analysis for requirements

The spectrum analysis for requirements is performed in
accordance with the technique in the section “Spectrum
analysis”.

Spectrum analysis for design

There are several kinds of software design documents
because there are several kinds of people who read them,
such as project managers, programmers, architects, and
testers. We focus on a design document for programmers
in this paper. We thus regard the explanations for each
method or function as a design document because pro-
grammers have to know the functionalities and roles of
each method or function.

The spectrum analysis for design is also performed in
accordance with the technique in the section “Spectrum
analysis” Instead of a sentence(s) for each requirement, a
sentence(s) used for explaining each method is used for

Requirements Quality Char. Design
A shall be ... <= *Pbility < emethod 1
B shallbe ... < *Qbility €=—— emethod2
C shall be ...« - *Rbility *method3
// *Sbility
J Shall be “ee < spectrum spec[rum °Ine'[h0d10
7 analysis 7 analysis 7
Requirements
08 Spectrum Design Spectrum
0.8
06 07
0.5 o
0.4 04
0.3 B 03 R
02 - rn Compare 03 I e T
Yo DT Ol o o o s M
0 L I L}
Pbility Qbility Rbility Sbility Tbility Phility Qbility Rbility Sbility Tbility
Figure 2 Method for validating quality requirements considerations in a design document with spectrum analysis.

Kaiya et al. SpringerPlus 2013, 2:310
http://www.springerplus.com/content/2/1/310

the spectrum analysis. We thus normalize the powers in a
spectrum on the basis of the number of methods.

In addition, we have to revise the spectrum in
accordance with external libraries such as application
programmable interfaces (API) and/or frameworks. Both
external organizations and the developer him/herself
will provide such external libraries. Such a revision is
performed as follows.

1. Inaccordance with the design description, external
libraries to be used are selected.

2. For each library, quality characteristics supported by
the library are identified. We call such characteristics
“library-characteristics”. The documents for each
library help us to identify them.

3. For each method, the libraries used in the method
are identified. We then establish the relationships
between the method and the library-characteristics
of the libraries.

Aspect-oriented design (AOD) is currently out of the
scope of this method. In the case of using AOD, the
revision steps above cannot be applied because main rou-
tines do not know their required libraries (aspects), but
the libraries know the routines that call the libraries. All
aspects should be woven together before applying our
method if AOD is used.

Page 4 of 14

We show an example of a design document for pro-
grammers in Figures 3 and 4 written in Javadoc (Oracle
2004). In this example, a supporting system for a drug-
store is shown, and the system will be written in Java. In
this design, 13 classes are defined except test classes. In
Java, test classes are normally ended with “Test” because
that is the common practice when using the unit test
tool called “JUnit” In Figure 3, methods in the class
“Medicine” are listed with brief explanations. However,
programmers cannot implement each method with only
such brief explanations because such explanations con-
tain only the functionality of the method. Designers thus
have to give more detailed explanations for each method,
as exemplified in Figure 4. In the figure, the method
“sell” in the class “Medicine” is explained in detail. By
reading this detailed explanation, programmers can cor-
rectly implement the method. In this detailed examina-
tion, programmers can know that the sell method does
not require checking the amount of stock. These kinds
of explanations avoid useless double checks for parame-
ters that are required by the policy of “design by contract”
(Meyer 1997). The spectrum analysis for the design is
applied to this kind of detailed explanations. Terms and
words that are used in the spectrum analysis depend
on the contents of the TCM. In our evaluation, the
same TCM is used in both the requirements and design
documents.

All Classes
Packages

=unnamed package=
util

Method Summary

static woid

Figure 3 Example of a design document.

Hedicine(java.lang.String name, int stock, int up,
java.lang.String d, Location |)
The constructor of the medicine.

m Modifier and Type Method and Description
n void append(Medicine n)
Slee;:' Append the stock of this medicine.
Ex3 static Deal getDeal ()
ExtDB Get the reference to the list of medicines
Location = P =
Medicine java.lang.String getDetail()
MedicineTest Explanation text of this medicine
Order Location getlLocation()
Iiﬁ'_:‘,,e‘r, ble The location of the medicine in a drug store is returned.
Queryabl
Report java.lang.String getHame()
SampleSystem get the name of this medicine.
Supply "
SupplyTest int getStock()
Wholesale get the stock
int getuPrice()
its unit price
void sell(Medicine m)

sell the medicine

setDeal (Deal d)
Initialize the reference to the list of medicines.

Kaiya et al. SpringerPlus 2013, 2:310
http://www.springerplus.com/content/2/1/310

Page 5 of 14

sell

Parameters:

Figure 4 Example of concrete description in a design document.

public void sel | (Medicine m)
sell the medicine. The stock thus decreases. If a different medicine is specified in a

parameter, the medicine is never sold. In this method, whether the amount of the stock is
enough or not is never checked, Please check the amount before calling this method

i - specify the amount of medicine to be sold.

Comparison

We can simply visualize the spectra of both the require-
ments and design and identify the differences in order to
find the causes of inconsistent and/or missing require-
ment considerations. When an engineer finds such causes,
he or she modifies the design documents to remove them.
We explain how to find such causes by using the exam-
ple in Figure 2. As mentioned in the first sub-section of
the section “Method’; we can find that “Qbility” seems to
be defined incompletely in the design because its power
in the design is smaller than that in the requirements. By
examining the relationships at the top of the figure, meth-
ods except for methods 2 and 3 are suspected to cause the
incompleteness because they are not related to “Qbility”
in the figure. To remove such causes, an engineer has to
establish more relationships between the quality charac-
teristics and design than exist now. For “Sbility’, methods
3 and 10 are suspected to cause the incorrectness in the
design because “Sbility” is not defined in the requirements
but is defined in the design as shown in Figure 2. To
remove such causes, the engineer has to establish less or
no relationships between the quality characteristics and
design than exist now.

Because a quality spectrum is a kind of vector, we use
cosine similarity (cossim) to decide whether two spectra
are similar to each other. Cosine similarity can be a met-
ric for identifying the inconsistent and incomplete quality
requirements considerations in design. The definition of
cosine similarity between a and b is as follows.

ar*b1+---+a,*xb,
\/a§+~~-+a5*\/b%+~--+bﬁ

cossim(a, b) =

When two vectors are completely the same, the value is
1. Because a quality spectrum never has a negative value
in its vector, cosine similarity between two quality spectra
varies from 0 to 1. Therefore, we may regard two qual-
ity spectra as similar if their cosine similarity is close to 1.
In addition, cosine similarity does not take the length of

the vector into account. Figure 5 shows an intuitive mean-
ing of the cosine similarity with two-dimensional vectors.
As show in the figure, two vectors D and C are almost
the same as each other. The cosine similarity among them
thus takes almost one (0.99). In comparison, vectors A and
E make a right angle. As mentioned above, all values in
a vector for our spectrum analysis take non-negative val-
ues. The direction of vector A is thus completely different
from that of vector E. The cosine similarity between these
vectors takes 0 by the definition above.

Supporting tool

As mentioned in the section “Spectrum analysis’, the
idea of the spectrum analysis is simple, but it is too dull
for humans to perform the analysis manually. We thus
developed a supporting tool to perform the spectrum

o/
« vector D .
:
25 D and C 0.99
veethr B [[lvector ¢ Dand B 0.32
4 A E and A 0
3
2
1 vector-B
vector A
>
0,0 1 2 3 4 5 6
X axis
Figure 5 Intuitive meaning of cosine similarity.

Kaiya et al. SpringerPlus 2013, 2:310
http://www.springerplus.com/content/2/1/310

analysis. Because the tool is designed to analyze nat-
ural language sentences, it can be applied to both
requirements documents and design documents, such as
Java docs.

Functions and usage

The tool has the following three functions. 2.

1. Dividing a natural language document into a list of
items:
An item is the unit for the requirements or design
documents in our spectrum analysis. For example, a
pair of comprised the name of a method and
sentences used for its detailed explanation is a unit
when a design document written in Java docs is
analyzed. An item normally consists of one or several
sentences. We can define several different rules for
dividing a document into a list of items. We assume a
text file contains the document and each line in the
file contains one requirement sentence. In such a
case, a document is divided into several items on the
basis of the occurrences of line separators?®. The
number of the items is thus the same as the number
of lines in the document. A document can be also
divided into several items when a line begins with
numbers such as 1, 2, or 3. A regular expression such

Page 6 of 14

as “* [0-9]" can be used for defining the rule for
such division. Figure 6 shows an example of a GUI
for this function. In this example, a normal rule that
uses line seperators is used for the division. For
design documents such as Java docs, we have to
prepare a plain text containing the pairs.

Performing spectrum analysis on the basis of a list of
items and TCM:

On the basis of a list of items generated by the first
function and a predefined TCM, the spectrum
analysis is performed automatically. A requirement
analyst or someone else can develop a TCM
manually with the help of a general spreadsheet or
something like that. The predefined TCM can be
prepared in such a way. The predefined TCM can be
also prepared according to the step 3 below. Figure 7
shows an example of the result of this function. A
sub-window labeled “NewTCM” in the right-hand
side of this figure shows the predefined TCM. Each
line of this sub-window corresponds to a term and its
data in this TCM. The first row of this sub-window
shows the internal identifier of a term (TID). The
second row shows the term itself. The third, fourth,
and the other rows show the quality characteristics,
such as suitability, accuracy, and interoperability.
Each cell except those in the first and second rows

DocumentFormatter - C:¥Users¥kazuki¥Desktop¥QRAST¥Documents¥IE6.txt [H[=] E3

File (] TooMTD Langl) Help(H

ID | Sentence EvaluationlD -
> | " Items shall be put on its toolbar. 0 ﬂ
1 Items shall be located on the basis of drag & ... |1
2 The size of icons on its toolbar shall be changed. |?
3 Buttons on its toolbar shall be represented only ... |3
4 Additional toolbar shall be added. 4
_ |5 A location bar shall be iconified according to ... |5
6 While browsing Web via the location bar, terms...5
7 While general terms are given to the location ... |7
8 Setting smart keywords shall enable us to dire ... 8
9 Several different search engines shall be avail ... |2
10 Web searching shall be executed at any stages ... |10
11 Default search engine shall be selected ... 11
12 New search engines shall be added to the list |12
13 The history of keywords for searching shallre ... |13
14 keywords for searching shall be complemented... 14
15 keywords previously used shall appear when ... 19 ~|
Format I Clear | default E
Step3 Format done. Please save this table. I

The labels, buttons and forms written in Japanese are
actually used above. They are translated in English.

Figure 6 Tool for formatting a document.

Kaiya et al. SpringerPlus 2013, 2:310
http://www.springerplus.com/content/2/1/310

Page 7 of 14

[Nice tool2

File ©) View¥ Tool(D Window? Help+

=[]

|ZOpen | |- New Spec. Sheet | /Open S.S.| . NewTCM Op.TCM [=). Save 3 Save All Print - Horizon _JVertical _JClose All]
= Specshea [T 3 W@ renton =T
B TCM & Saveas CSV |~ SaveasTCM ~ || Auto Eval. = Saveas CSV
NewTGM e 1 Terms
(1] Sentence Suitability Accuracy Ga
0 ‘Ttem shall ... 100 m o0 m‘j TID Term | Suitability | Accuracy Interoperability | Go A
1 Item shall ... |00 00 on ot Toolbar __000/5 QLS 4ol L
= The size of .. 100 3 104 [location bar [000/5 00 0/5 000/5 0
3 Buttonson ... |00 m 00 at 195 | arrow 00 0/1 00 041 0004 [1]1]
| \Additional . oo o oo o 196 |Google 000/2 00 0/2 000/2 00
5 IA location |00 00 00 e | ||| | import oo/ oa0/2 L0272 0
5 While brows 0 o oo i 108 |Firefox 000/19 |on 09 000419 i
= While gener .. 110 = = jﬂ 199 side bar 000/2 00 0/2 00 0/2 00
] —| 2 200 [recover 000/ 000/ 000/ 0
Add | Dell | wx ||| o Java 00074 00 0/4 00 0/4 10
20 | highlight 00074 00 0/4 000/4 0
" _Selected sentence 203 [status bar 000/ lonos3 000/3 o0
| The size of icons on its toolbar shall be changed. j 204 Windons 000/ 00 0/ 1014 0
[Term Suitability Accuracy | Intercperability | Compliance e Lo p00n jaaua 24 L
t0olbar D 0005 O 00 0/5 Conos | Conos || |26 | format 000/1 00 0/1 000/ 10
change I 000/6 I o000/ onose I o0o/6 207 program 0001 el 0o on 0o
icon r onose ™ o000/ I oo r onoss 28 [HTMCE 0001 00 04 0Di0A ML
| _size o003 | @ 1033 | [000/ | o000 20 |.preview 0004 [on0n i oL
. - = i = S 210 | design 000/ 00 0/ 00041 0
211 | warning 00 0/1 lon oA 00 0/1 0
212 | block 00 0/2 00 0/2 00 0/2 00
BE Cookie 000/7 0007 00077 10
214 | privacy 000/2 00 0/2 000/2 00
215 | domain 0004 looon 000/ 00
216 | quickly 000/2 loo 02 00 0/2 i
217 [sst 000/ 00 0/1 00 0/1 00
o | ” 'zjs [ms 0004 jonon oo0A Uil;l
Add | _Dell || Search || ["Add | Dell |[Search |

The labels, buttons and forms written in Japanese are actually
used above. They are translated in English.

Figure 7 Tool for performing spectrum analysis based on an existing TCM.

contains numbers such as “0.0 0/5”. These values
show the probability for whether a term is related to
a quality characteristic. When its form is “p x/y”,
the value of p indicates the probability, and the value
is derived by dividing x by y. The value of y is the
number of items, each of which contains a term in
the predefined TCM. The value of x is the number of
items, each of which contains a term and is
semantically related to the quality characteristic in
the predefined TCM. For example, a cell for the term
“Windows” (its TID is 204) and “Interoperability”
contains “1.0 1/1”. The meaning of the value is as
follows. The term “Windows” occurred in an item
during the past analyses, and the item was
semantically related to “Interoperability.” Therefore,
we may assume a new item containing the term
“Windows” will be 100 percent (i.e., 1.0) related to
“Interoperability”. A sub-window labeled
“NewSpecSheet” in the left-hand side of the Figure 7
shows the results of the spectrum analysis.

The top area of the sub-window shows the list of

items in Figure 6. In this example, the second item is
selected in the figure. The bottom area of the
sub-window shows four terms automatically
picked-up from the second item. For each term,
probabilities for whether a term is related to each
quality characteristic are automatically looked up in
the TCM. The looked-up probabilities are also
shown in the bottom area. An analyst may accept the
probabilities, and decide that an item is related to
specific quality characteristics. He or she may also
ignore the probabilities, and make another decision.
Updating the TCM on the basis of the current result
of the spectrum analysis:

On the basis of the current results of the spectrum
analysis, the current TCM may be updated. As
mentioned in the section “Spectrum analysis”, the
confidence of the TCM increases when the historical
data of the TCM usage is gathered. This feature was
validated through our experiment (Kaiya et al. 2011).
When no current TCM exists, a new TCM is created
on the basis of only the results of a current analysis.

Kaiya et al. SpringerPlus 2013, 2:310
http://www.springerplus.com/content/2/1/310

Implementation

The tool was implemented in C#, and .NET Framework
2.0 was used. For the GUI, Windows forms were used,
and SQLite (Hipp et al. 2013) was used for data pro-
cessing. Because SQLite simply uses a file as a database,
the portability of this tool is very good, i.e., we do not
have to setup the database server in addition to our
tool. Because the tool was designed and implemented for
processing Japanese sentences and there are no explicit
separators between words such as spaces or tabs in a
Japanese sentence, we had to split a sentence into terms
and words on the basis of the meaning of the sentence. We
used a Japanese morphological analyzer called “Chasen”
(Nara Institute of Science and Technology 2011) to iden-
tify terms and words in a sentence automatically. For the
performance, it took about 3 seconds to process about 200
items under a TCM with about 200 terms. We used a PC
with a 1.73 MHz Celeron M processor.

Preliminary evaluation
Overview of preliminary evaluation
The spectrum analysis on requirements specifications
was already evaluated (Kaiya et al. 2010a), so we can
assume that the derived spectrum is equivalent to the
intuitive evaluation of a requirements specification per-
formed by an expert in the application area. The objec-
tive of this preliminary evaluation is thus to confirm the
same assumption for design documents. We evaluate the
design spectrum before it is revised by using external
libraries because we want to know whether explanation
sentences for each method can be used for the spectrum
analysis.

The steps in this evaluation are as follows.

1. We ask an expert to identify the quality
characteristics related to each method in a design
document.

2. On the basis of this identification, we derive a
spectrum by using the spectrum analysis in the
section “Spectrum analysis”. We call the spectrum an
“expert spectrum.”

3. We prepare TCMs for each application domain.

4. By using the TCM, we automatically derive a
spectrum of the document. We call the spectrum a
“TCM spectrum.”

5. We compare these two spectra because we expect
they are almost the same.

Table 1 Overview of systems to be analyzed

Page 8 of 14

Systems to be used in this evaluation

Here, we introduce the systems to be used in this eval-
uation. An overview of the systems is shown in Table 1.
For ease, we call them “Movie Player” or “PDF Viewer”
instead of their original names. Both systems are applica-
tions running on Mac OS. They are commercial software
because they are sold on the Mac App Store (Umemura
2011, 2012). With the help of the developer of these appli-
cations, we can know their development data, shown in
Table 1, even though they are not open-source software.
The developer said requirements were correctly adapted
to the design document in each system.

As mentioned in the previous section, we focus on the
design document for programmers. Programmers have to
know the functionalities and roles of each method in each
class. We thus regard the explanations for each method
as design documents. Because the systems are written in
Objective-C, the design documents are written in Head-
erDoc (Apple Inc. 2013), which is similar to Javadoc. In
addition to the standard API and frameworks, an external
APl is used only in the PDF Viewer (Dioretsa). This is one
of the reasons the lines of code (LOC) for the PDF Viewer
are smaller than those for the Movie Player, as shown in
Table 1, even though the number of requirements (NOR)
is almost the same.

Results and discussion

We used quality characteristics defined in the ISO 9126
standard (International Standard ISO/IEC 9126 1991) as
the categorization of quality requirements. Figure 8 shows
the result of a comparison between the expert spectrum
and the TCM spectrum for the Movie Player. We regard
two spectra is the same when their cosine similarity is big-
ger than 0.95. As shown in the figure, two spectra were
almost the same, and their cosine similarity was 0.9987.
The result for the PDF Viewer is shown in Figure 9, and
the cosine similarity was also 0.9784. We may thus con-
clude that we can apply the spectrum analysis in the
section “Spectrum analysis” to the design documents such
as HeaderDoc.

Evaluation

Overview of the evaluation

The objective of this evaluation was to confirm whether
the method in the section “Method” works well. In
other words, we wanted to confirm that the quality
requirements defined in a requirements specification

Type Name LoC NOM NOC NOR
Movie Player Meteoroid 11277 167 21 61
PDF Viewer Dioretsa 4640 84 7 60

Acronyms are lines of codes excluding comments (LOC), number of methods (NOM), number of classes (NOC) and number of requirements (NOR).

Kaiya et al. SpringerPlus 2013, 2:310
http://www.springerplus.com/content/2/1/310

Page 9 of 14

Figure 8 Expert spectrum and TCM spectrum for Movie Player.

0.14
0.12 I
o1 O Expert
B TCM
0.08 r
0.06
0.04 1
0.02 ’_I
NI R N N
- 8 - ., N g . - - . & $. . . - . o ' -
& \,&d & & & @&@ ST ST HT TS & &0
£ & & & &L K&y ¥ & B .S N P
& W F & S RGO SRS
& N & &P o O e &S Y*b & CPQ &
& & ¥ RS © <
Q@%

were correctly adopted in the design document. We then
applied the method to systems introduced in the section
“Preliminary evaluation”, and analyzed the results. As
mentioned in the section, quality requirements are cor-
rectly adopted in the design document in each system.
We thus expect the two spectra for the requirements and
design to be almost the same. In the same way as the pre-
liminary evaluation, we also used quality characteristics
defined in the ISO 9126 standard (International Standard

ISO/IEC 9126 1991) as the categorization of quality
requirements. The standard contains 21 characteristics as
mentioned in the results below.

Results

Figure 10 shows the result of the method for the Movie
Player. Because a spectrum is a 21-demensional vector
for the 21 quality characteristics and the method outputs
two spectra for the requirements and design, these two

0.25
0.2 —l
O Expert
ETCM
0.15
0.1
0.05
0 L L L L L L L L L L L L L L L L
F AT ITITESI T TF T T TIPS
ST A FITTEFTFT LT AT TN ESE &
F W g K& S ¥ FFPFFTFTFTFT ST E FFT LD & &
S K 8 - O &P R BRI S ¥ &\ & &
& » & & ¥ FF W Ao NS Q_QQ
& < S &P
N ngc
Figure 9 Expert spectrum and TCM spectrum for PDF Viewer.

Kaiya et al. SpringerPlus 2013, 2:310
http://www.springerplus.com/content/2/1/310

Page 10 of 14

0.3
025 -
EReq
0.2 .
B Design
0.15 - —‘
0.1
0.05
. M R
FEFFITFETITITITFTE T T T TS &
& & L Q\ o @‘b ¥ & &L F S F P & & & ¥ & F
® v & & O S F S N L EE
& o SV TS P S @
& < F IS
S &
Figure 10 Result of method for Movie Player.

spectra are visualized as bar charts in the figure. The spec-
trum for the design was not revised in accordance with the
external libraries because no external libraries were used
in the Movie Player. Although the shapes of the graphs
were not similar, the cosine similarity of these two spectra
was about 0.9722. The result shows that the two spectra
(vectors) pointed in a similar direction, but the lengths of
the vectors differed.

Figure 11 shows the result of the method for the PDF
Viewer. Because external libraries were used in the system
as mentioned in the section “Preliminary evaluation’, the
spectrum for the design was revised in accordance with
them. The cosine similarity of these two spectra was about
0.9543. The result shows that the two spectra (vectors)
pointed in a similar direction.

Discussion

Judging the results above, the methods seemed to works
well, although the lengths of vectors (spectra) were not
similar but pointed in a similar direction. Because the
lengths were not similar, there is a possibility that all qual-
ity characteristics were equally diminished in the design
document. However, the possibility is too unlikely to
occur because more than 20 characteristics were used in
the spectrum. A more plausible cause for the difference
of the lengths is the way the normal form of each spec-
trum was derived. As mentioned in the section “Method”,
each value in a vector (a spectrum) for a requirements
document is not the same as the number of requirements
related to each quality characteristic but the same as the
number of requirements divided by the number of all

requirements. Because each requirements document con-
tains a different number of requirements, we have to
normalize each spectrum in this way. In the same way
as the requirements document, a design document is
normalized in accordance with the number of methods.
This idea will cause the difference of the spectra lengths.

One idea to solve this problem is to normalize the spec-
trum of design by using the number of requirements. The
quality characteristics are the concepts at the require-
ments stage even when they embedded in design docu-
ments, test cases, or codes. The lengths of the spectra
become almost the same when we apply this idea in the
systems. However, our method only focuses on the sim-
ilarity of the direction among the spectra, so we do not
have to solve this problem now. The problem has a bad
effect only on the visual effects, as shown in Figures 10 and
11, but it never affects the results of cosine similarity.

We discuss the effectiveness of the revision caused by
the external libraries. We applied the method without
the revision to the PDF Viewer. The result is shown in
Figure 12, and we obtained 0.9374 as the cosine similarity
between the requirements and design. Because the cosine
similarity was 0.9543 in the method with the revision as
mentioned above, the revision seemed to improve the
results. We cannot perform the same test for the Movie
Player because it does not use the external libraries.

Finally, we mention the threats to the validity of
this evaluation. Threats to internal validity are related
to whether the data comparison is properly measured.
Because both requirements and design spectra were
derived systematically in accordance with the steps in

Kaiya et al. SpringerPlus 2013, 2:310
http://www.springerplus.com/content/2/1/310

Page 11 of 14

0.5
0.45
0.4
0.35

EReq

0.3

M Design

0.25

Figure 11 Result of method for PDF Viewer.

L L L L L L L L

S S S S S @
S rb'& {g,& &,5\\‘ &
& & &

S
N X
P S

)
rs‘
02/

& o
& S &
@Q

our method, two spectra were properly measured. We
do not have to worry about the learning effect because
there are few steps for subjective decision in our method.
We thus conclude that there are no threats to internal
validity. Threats to external validity are related to the
generalizability of the results. Although commercial soft-
ware systems were used in this evaluation, they were
developed in Objective-C, which is a little bit different
from other languages such as java or C#. In this sense,

a threat to external validity can exist. However, there are
no significant differences for the requirements and design
documents because the requirements are written in nat-
ural language sentences and the design documents are
written in HeaderDoc, which is similar to Javadoc doc-
uments. In this sense, there are no threats to external
validity. Construct validity is related to the measurement
of data. As mentioned above, there is a problem with
the length of a design spectrum because the spectrum is

0.5
0.45

0.4

EReq

0.35
0.3

M Design

0.25
0.2

0.15

J

&S
%QQQOV@@&

(\O@

& &

& é&
C/O

&
&
\@
QO
N

Figure 12 Result of method for PDF Viewer before the revision based on the external libraries.

Kaiya et al. SpringerPlus 2013, 2:310
http://www.springerplus.com/content/2/1/310

normalized on the basis of the number of methods. In this
sense, there is a threat to construct validity. We however
do not mind this point because a metric cosine similarity
focuses not on the length of the spectrum but only on its
direction. There is a threat to conclusion validity because
we cannot perform statistical analysis only with two
treatments.

Related works

Software quality requirements are widely focused on in
the field of software, and we can find a special maga-
zine issue of IEEE Software published in 2008 (Blaine
and Cleland-Huang 2008). In the issue, the importance
and challenges of software quality requirements were
summarized, and one of the challenges is measurement
and traceability for software quality requirements. In
this section, we briefly review research on this mea-
surement and traceability to clarify the importance of
software quality requirements. We use non-functional
requirements (NFRs) as a synonym for quality require-
ments even though NFR contains more things than do
quality requirements (Blaine and Cleland-Huang 2008;
Glinz 2008).

First, we focus on traceability links among different
kinds of software engineering artifacts. Managing explicit
links among different artifacts is a normal idea. For exam-
ple, links between a section in a requirements document
and classes and packages in design documents help us to
find the impacts of changes on design.

However, maintaining such links takes a lot of effort
in general. To mitigate such effort, several kinds of ideas
are proposed. Lucia et al. used information retrieval
techniques to manage such links (Lucia et al. 2009).
Mandelin et al. used a probability model to do that
(Mandelin et al. 2005). Ratanotayanon et al. used the
differences between different versions of artifacts to
manage traceability links efficiently (Ratanotayanon
et al. 2009). Lopez et al. used the techniques of natu-
ral language processing (NLP) and machine learning
(ML) to trace quality requirements to architec-
ture (Gokyer et al. 2008). Model-driven approaches
can enable us maintain traceability automatically.
Alebrahim et al. proposed a method to derive software
architectures from quality requirements (Alebrahim et al.
2011). In the method, problem frames (Jackson 2000) and
its UML profile was used for specifying functional and
quality requirements. They also used patterns for deriving
architecture. Although the method seems to work well
for maintaining traceability, we have to use specific and
normally complex notations.

Second, we focus on a central model shared by software
engineering artifacts. By using this model, we can eas-
ily trace an artifact to another via the model. Jane et al.
proposed a method called “Goal Centric Traceability”

Page 12 of 14

for quality requirements (Cleland-Huang 2005; Cleland-
Huang et al. 2008). In the method, a goal model plays
the role of a central model. The thesaurus and ontol-
ogy are popular notations for a central model. Daneva et
al. proposed an ontology for NFRs (2009; Kassab et al.
2008). However, how to make links between ontology and
software artifacts was not mentioned. Saeki et al. used a
domain ontology for traceability between documents and
source codes (Yoshikawa et al. 2009).

Kaiya et al proposed another idea for traceability called
“projection traceability” (Kaiya et al. 2010b), and the
method proposed in this paper is based on this idea. In
that paper (Kaiya et al. 2010b), the traceability between
requirements and codes is analyzed, but the execution
tests can be used instead of this analysis because the codes
can be executable. In comparison, the method in this
paper is about the traceability between requirements and
design, and it helps the software developers find miss-
ing and/or incorrect quality requirements considerations
earlier than with the analysis in (Kaiya et al. 2010b).

Finally, we briefly review research on measuring qual-
ity requirements. One famous catalog for software qual-
ity requirements is the ISO9126 standard (International
Standard ISO/IEC 9126-1 2001), which contains about
20 subcharacteristics such as accuracy, and reliability.
Washizaki et al. provided measurement methods that
use the usual metrics on source codes and design dia-
grams such as lines of codes (LOC) and cyclomatic com-
plexity (CC) for each subcharacteristic (Washizaki et al.
2008). Jane et al. proposed a method for detecting and
categorizing NFRs contained in a document by using
information retrieval (IR) and NLP techniques. (Cleland-
Huang et al. 2006). To count and normalize the number
of NFRs in a document, we can visualize the distri-
bution of NFRs. Kaiya et al. proposed a technique for
summarizing such a distribution and visualizing it on
the basis of a metaphor of spectrum analysis in optics
(Kaiya et al. 2009). They used the technique to iden-
tify domain specific commonality by directly comparing
one spectrum of a system to another. Whether a require-
ment is related to a quality requirement is decided on
the basis of the occurrences of terms, which characterize
the quality requirement in the study. Measuring quality
requirements is used for prioritizing requirements (Otero
et al. 2010), but how to establish relationships between
quality requirements (a quality feature in the study) is
not explained in the study. Because quality requirements
qualify functional requirements, measuring and predict-
ing quality requirements on the basis of the content of
each functional requirement is a natural idea. Kaiya et
al. developed such an idea by using semi-formal func-
tional requirement notation (Kaiya and Ohnishi 2011).
They also used a machine learning technique to automate
the prediction and measurement (Tanaka et al. 2012).

Kaiya et al. SpringerPlus 2013, 2:310
http://www.springerplus.com/content/2/1/310

This kind of research is useful for tracing quality require-
ments indirectly.

Conclusion

In this paper, we proposed the method for validat-
ing quality requirements considerations in a design
document. We also proposed a supporting tool for the
method. Because the method uses spectrum analysis for
quality requirements, it does not give any constraints on
design notations and activities. Through an evaluation on
commercial software systems, we confirmed the method
works well.

Currently, we have no integrated CASE tools for sup-
porting design activities and design analysis based on this
method. Our current tool analyzes only documents on the
basis of our spectrum analysis, so analysts have to manu-
ally modify these documents if problems are found. One
important goal in the future is to develop an integrated
CASE tool for supporting both design descriptions and
analyses for software development.

Endnote

® Line separators depend on the kinds of operating
system. For example, a line separator in UNIX is
normally \#, while one in Windows is \r\z.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

HK gave the basic idea of this method, and also designed the experiments for
its evaluation. MU carried out the experiments. SO analyzed the results of the
experiments. KK carried out the related studies. Each author wrote each part of
the manuscript. All authors read and approved the final manuscript.

Received: 4 November 2012 Accepted: 4 July 2013
Published: 11 July 2013

References

Alebrahim A, Hatebur D, Heisel M (2011) A method to derive software
architectures from quality requirements. Asia-Pacific Softw Eng Conf 0:
322-330

Blaine JD, Cleland-Huang J (2008) Software quality requirements: how to
balance competing priorities. IEEE Software 25(2): 22-24

Cleland-Huang J (2005) Toward improved traceability of non-functional
requirements. In: International Workshop on Traceability in Emerging
Forms of Software Engineering (TEFSE). ACM Press, New York, USA,
pp.14-19

Cleland-Huang J, Marrero W, Berenbach B (2008) Goal-centric traceability
using virtual plumblines to maintain critical systemic qualities. IEEE Trans
Software Eng 34(5): 685-699

Cleland-Huang J, Settimi R, Zou X, Solc P (2006) The detection and
classification of non-functional requirements with application to early
aspects. In: RE. [EEE Computer Society, Los Alamitos, CA, USA, pp .36-45

Firesmith D (2005) Quality requirements checklist. J Object Technol 4(9): 31-38

Glinz M (2008) A risk-based, value-oriented approach to quality requirements.
|EEE Softw 25(2): 34-41

Gokyer G, Cetin S, Sener C, Yondem MT (2008) Non-functional requirements to
architectural concerns: ML and NLP at crossroads. Softw Eng Ady, Int Conf
on 0: 400-406

Oracle (2004) Javadoc Tool. http://www.oracle.com/technetwork/java/javase/
documentation/index-jsp-135444.html

Page 13 of 14

Hipp R D, Kennedy D, Mistachkin J (2013) SQLite. http://www.sglite.org/

Nara Institute of Science and Technology (2011) ChaSen legacy. http://
sourceforge.jp/projects/chasen-legacy/

Umemura M (2012) Meteoroid. http://itunes.apple.com/us/app/meteoroid/
id410280918?mt=12

Umemura, M (2011) Dioretsa. http://itunes.apple.com/us/app/dioretsa/
id4114222307mt=128&Is=1

Apple Inc (2013) HeaderDoc User Guide. http://developer.apple.com/library/
mac/#documentation/DeveloperTools/Conceptual/HeaderDoc/intro/
intro.html

International Standard ISO/IEC9126 (1991) Information technology - software
product evaluation - quality characteristics and guidelines for their use.

International Standard ISO/IEC9126-1 (2001) Software engineering - product
quality - Part 1: Quality model.

Jackson M (2000) Problem frames, analyzing and structuring software
development problems. Addison-Wesley, Edinburgh, UK

Kaiya H, Ohnishi A (2011) Quality requirements analysis using requirements
frames. In: QSIC, IEEE Computer Society, Los Alamitos, CA, USA, pp .198-207

Kaiya H, Sato T, Osada A, Kitazawa N, Kaijiri K (2008) Toward quality
requirements analysis based on domain specific quality spectrum. In: Proc.
of the 23rd Annual ACM Symposium on Applied Computing Volume 1 of
3. ACM, Fortaleza, Ceara, Brazil, pp .596-601 [Track on Requirements
Engineering]

Kaiya H, Suzuki S, Ogawa T, Tanigawa M, Umemura M, Kaijiri K (2012) A
spectrum analysis method for software quality requirements analysis using
history of analyses. IPSJ J 53(2): 510-522 [(in Japanese)]

Kaiya, H, Suzuki S, Ogawa T, Tanigawa M, Umemura M, Kaijiri K (2011)
Spectrum analysis for software quality requirements using analyses
records. In: COMPSAC Workshops, pp .500-503

Kaiya H, Tanigawa M, Suzuki S, Sato T, Kaijiri K (2009) Spectrum analysis for
quality requirements by using a term-characteristics. In: 21th International
Conference Advanced Information Systems Engineering (CAISE 2009).
Springer-Verlag, Berlin Heidelberg, pp .546-560 [LNCS 5565]

Kaiya H, Tanigawa M, Suzuki S, Sato T, Osada A, Kaijiri K (2010a) Improving
reliability of spectrum analysis for software quality requirements using
TCM. IEICE Trans 93-D(4): 702-712

Kaiya H, Amemiya K, Shimizu Y, Kaijiri K (2010b) Towards an integrated support
for traceability of quality requirements using software spectrum analysis.
ICSOFT (2): pp. 187-194

Kassab M, Daneva M, Ormandjieva O (2008) A meta-model for the assessment
of non-functional requirement size. In: SEAA, IEEE Computer Society, Los
Alamitos, CA, USA, pp 411-418

Kassab M, Ormandjieva O, Daneva M (2009) An ontology based approach to
non-functional requirements conceptualization. Softw Eng Ady, Int Conf
on 0: 299-308

Lucia AD, Oliveto R, Tortora G (2009) Assessing IR-based traceability recovery
tools through controlled experiments. Empir Softw Eng 14: 57-92

Mandelin D, Xu L, Bodik R, Kimelman D (2005) Jungloid mining: helping to
navigate the APl jungle. In: PLDI, ACM Press, New York, USA, pp .48-61

Meyer B (1997) Object-oriented software construction, second edition.
Prentice Hall

Ncube C, Lockerbie J, Maiden NAM (2007) Automatically generating
requirements from * models: experiences with a complex airport
operations system. In: REFSQ. Springer-Verlag, Berlin Heidelberg, pp .33-47

Otero CE, Dell E, Qureshi A, Otero LD (2010) A quality-based requirement
prioritization framework using binary inputs. Asia Int Conf Modell &
Simulation 0: 187-192

Ratanotayanon S, Sim SE, Raycraft DJ (2009) Cross-artifact traceability using
lightweight links. In: TEFSE '09: Proceedings of the 2009 ICSE Workshop on
Traceability in Emerging Forms of Software Engineering, Washington, DC,
USA. IEEE Computer Society, pp .57-64

Tanaka K, Kaiya H, Ohnishi A (2012) Predicting quality requirements necessary
for a functional requirement based on machine learning. In: The Seventh
International Conference on Software Engineering Advances (ICSEA 2012),
Lisbon, ARIA, Portugal, pp .540-547 [18-23 Nov.]

Washizaki H, Hiraguchi H, Fukazawa Y (2008) A metrics suite for measuring
quality characteristics of JavaBeans components. In: Jedlitschka A, Salo O
(eds) Product-Focused Software Process Improvement. 9th International
conference, PROFES 2008, Monte Porzio Catone, Italy, 23-25 June 2008
Proceedings. Lecture notes in computer science, vol 5089. Springer, Berlin
Heidelberg, pp .45-60 [LNCS 5089]

http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.sqlite.org/
http://sourceforge.jp/projects/chasen-legacy/
http://sourceforge.jp/projects/chasen-legacy/
http://itunes.apple.com/us/app/meteoroid/id410280918?mt=12
http://itunes.apple.com/us/app/meteoroid/id410280918?mt=12
http://itunes.apple.com/us/app/dioretsa/id411422230?mt=12&ls=1
http://itunes.apple.com/us/app/dioretsa/id411422230?mt=12&ls=1
http://developer.apple.com/library/mac/#documentation/DeveloperTools/Conceptual/HeaderDoc/intro/intro.html
http://developer.apple.com/library/mac/#documentation/DeveloperTools/Conceptual/HeaderDoc/intro/intro.html
http://developer.apple.com/library/mac/#documentation/DeveloperTools/Conceptual/HeaderDoc/intro/intro.html

Kaiya et al. SpringerPlus 2013, 2:310
http://www.springerplus.com/content/2/1/310

Yoshikawa T, Hayashi S, Saeki M (2009) Recovering traceability links between a
simple natural language sentence and source code using domain
ontologies. In: ICSM, pp .551-554

Zhang Y, Liu'Y, Zhang L, Ma Z, Mei H (2008) Modeling and checking for
non-functional attributes in extended UML class diagram. In: COMPSAC.
IEEE Computer Society, Los Alamitos, CA, USA, pp .100-107

doi:10.1186/2193-1801-2-310
Cite this article as: Kaiya et al.: Spectrum analysis on quality requirements
consideration in software design documents. SpringerPlus 2013 2:310.

Page 14 of 14

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

	Abstract
	Keywords

	Introduction
	Spectrum analysis
	Method
	Overview
	Spectrum analysis for requirements
	Spectrum analysis for design
	Comparison

	Supporting tool
	Functions and usage
	Implementation

	Preliminary evaluation
	Overview of preliminary evaluation
	Systems to be used in this evaluation
	Results and discussion

	Evaluation
	Overview of the evaluation
	Results
	Discussion

	Related works
	Conclusion
	Endnote
	Competing interests
	Authors' contributions
	References

