1,500 research outputs found

    Low Carbon Development for Cities: Methods and Measures

    Get PDF
    Cities consume more than 60% of global energy and that share is expected to rise with the rapid rate of urbanization now underway (van der Hoeven, 2012). Cities\u27 energy consumption, along with the reshaping and resurfacing of land and the food and other resources they demand, lead to a similarly large share of global greenhouse gas (GHG) emissions, carbon-based and otherwise. With cities playing a crucial role in sustainable energy and climate systems, this chapter examines emerging efforts by cities around the world to shift to a development pattern with less energy and less carbon

    Impacts of climate change on streamflow in the Upper Mississippi River Basin: A regional climate model perspective

    Get PDF
    Impact of climate change on streamflow in the Upper Mississippi River Basin is evaluated by use of a regional climate model (RCM) coupled with a hydrologic model, Soil and Water Assessment Tool (SWAT). The RCM we used resolves, at least partially, some fine-scale dynamical processes that are important contributors to precipitation in this region and that are not well simulated by global models. The SWAT model was calibrated and validated against measured streamflow data using observed weather data and inputs from the U.S. Environmental Protection Agency Better Assessment Science Integrating Point and Nonpoint Sources (BASINS) geographic information systems/database system. Combined performance of SWAT and RCM was examined using observed weather data as lateral boundary conditions in the RCM. The SWAT and RCM performed well, especially on an annual basis. Potential impacts of climate change on water yield and other hydrologic budget components were then quantified by driving SWAT with current and future scenario climates. Twenty-one percent increase in future precipitation simulated by the RCM produced 18% increase in snowfall, 51% increase in surface runoff, and 43% increase in groundwater recharge, resulting in 50% net increase in total water yield in the Upper Mississippi River Basin on an annual basis. Uncertainty analysis showed that the simulated change in streamflow substantially exceeded model biases of the combined modeling system (with largest bias of 18%). While this does not necessarily give us high confidence in the actual climate change that will occur, it does demonstrate that the climate change “signal” stands out from the climate modeling (global plus regional) and impact assessment modeling (SWAT) “noise.

    Sequential climate change policy

    Get PDF
    Successfully managing global climate change will require a process of sequential, or iterative, decision‐making, whereby policies and other decisions are revised repeatedly over multiple decades in response to changes in scientific knowledge, technological capabilities, or other conditions. Sequential decisions are required by the combined presence of long lags and uncertainty in climate and energy systems. Climate decision studies have most often examined simple cases of sequential decisions, with two decision points at fixed times and initial uncertainties that are resolved at the second decision point. Studies using this formulation initially suggested that increasing uncertainty favors stronger immediate action, while the prospect of future learning favors weaker immediate action, but subsequent work with more general formulations showed that the direction of either effect is indeterminate, depending on multiple elements of model structure and parameter values. Current issues in sequential climate decision‐making include assessing responses to potential slow learning or negative learning, and examining the implications of various mechanisms by which current decision‐makers may seek to influence future decisions by altering the choice sets, knowledge states, marginal costs and benefits, or default procedural requirements faced by future decision‐makers. WIREs Clim Change 2011 2 744–756 DOI: 10.1002/wcc.128 For further resources related to this article, please visit the WIREs websitePeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86798/1/128_ftp.pd

    What benefits do community forests provide, and to whom? A rapid assessment of ecosystem services from a Himalayan forest, Nepal

    Get PDF
    In Nepal, community forestry is part of a national strategy for livelihoods improvement and environmental protection. However, analysis of the social, economic and environmental impacts of community forestry is often limited, restricted to a narrow set of benefits (e.g. non-timber forest products) and rarely makes comparisons with alternative land-use options (e.g. agriculture). This study, conducted at Phulchoki Mountain Forest Important Bird and Biodiversity Area (IBA) in the Kathmandu Valley, used methods from the Toolkit for Ecosystem Service Site-based Assessment (TESSA) to compare multiple ecosystem service values (including carbon storage, greenhouse gas sequestration, water provision, water quality, harvested wild goods, cultivated goods and nature-based recreation) provided by the site in its current state and a plausible alternative state in which community forestry had not been implemented. We found that outcomes from community forestry have been favourable for most stakeholders, at most scales, for most services and for important biodiversity at the site. However, not all ecosystem services can be maximised simultaneously, and impacts of land-use decisions on service beneficiaries appear to differ according to socio-economic factors. The policy implications of our findings are discussed in the context of proposals to designate Phulchoki Mountain Forest IBA as part of a Conservation Area

    Forest carbon accounting methods and the consequences of forest bioenergy for national greenhouse gas emissions inventories

    Get PDF
    While bioenergy plays a key role in strategies for increasing renewable energy deployment, studies assessing greenhouse gas (GHG) emissions from forest bioenergy systems have identified a potential trade-off of the system with forest carbon stocks. Of particular importance to national GHG inventories is how trade-offs between forest carbon stocks and bioenergy production are accounted for within the Agriculture, Forestry and Other Land Use (AFOLU) sector under current and future international climate change mitigation agreements. Through a case study of electricity produced using wood pellets from harvested forest stands in Ontario, Canada, this study assesses the implications of forest carbon accounting approaches on net emissions attributable to pellets produced for domestic use or export. Particular emphasis is placed on the Forest Management Reference Level (FMRL) method, as it will be employed by most Annex I nations in the next Kyoto Protocol Commitment Period. While bioenergy production is found to reduce forest carbon sequestration, under the FMRL approach this trade-off may not be accounted for and thus not incur an accountable AFOLU-related emission, provided that total forest harvest remains at or below that defined under the FMRL baseline. In contrast, accounting for forest carbon trade-offs associated with harvest for bioenergy results in an increase in net GHG emissions (AFOLU and life cycle emissions) lasting 37 or 90 years (if displacing coal or natural gas combined cycle generation, respectively). AFOLU emissions calculated using the Gross-Net approach are dominated by legacy effects of past management and natural disturbance, indicating near-term net forest carbon increase but longer-term reduction in forest carbon stocks. Export of wood pellets to EU markets does not greatly affect the total life cycle GHG emissions of wood pellets. However, pellet exporting countries risk creating a considerable GHG emissions burden, as they are responsible for AFOLU and bioenergy production emissions but do not receive credit for pellets displacing fossil fuel-related GHG emissions. Countries producing bioenergy from forest biomass, whether for domestic use or for export, should carefully consider potential implications of alternate forest carbon accounting methods to ensure that potential bioenergy pathways can contribute to GHG emissions reduction targets

    Energy Technology Progress for Sustainable Development

    Get PDF
    Energy security is a fundamental part of a country`s national security. Access to affordable, environmentally sustainable energy is a stabilizing force and is in the world community`s best interest. The current global energy situation however is not sustainable and has many complicating factors. The primary goal for government energy policy should be to provide stability and predictability to the market. This paper differentiates between short-term and long-term issues and argues that although the options for addressing the short-term issues are limited, there is an opportunity to alter the course of long-term energy stability and predictability through research and technology development. While reliance on foreign oil in the short term can be consistent with short-term energy security goals, there are sufficient long-term issues associated with fossil fuel use, in particular, as to require a long-term role for the federal government in funding research. The longer term issues fall into three categories. First, oil resources are finite and there is increasing world dependence on a limited number of suppliers. Second, the world demographics are changing dramatically and the emerging industrialized nations will have greater supply needs. Third, increasing attention to the environmental impacts of energy production and use will limit supply options. In addition to this global view, some of the changes occurring in the US domestic energy picture have implications that will encourage energy efficiency and new technology development. The paper concludes that technological innovation has provided a great benefit in the past and can continue to do so in the future if it is both channels toward a sustainable energy future and if it is committed to, and invested in, as a deliberate long-term policy option
    corecore