57 research outputs found

    Effi cacy and safety of re-treatment with the same artemisinin-based combination treatment (ACT) compared with an alternative ACT and quinine plus clindamycin after failure of fi rst-line recommended ACT (QUINACT): a bicentre, open-label, phase 3, randomised controlled trial

    Get PDF
    Background Quinine or alternative artemisinin-based combination treatment (ACT) is the recommended rescue treatment for uncomplicated malaria. However, patients are often re-treated with the same ACT though it is unclear whether this is the most suitable approach. We assessed the effi cacy and safety of re-treating malaria patients with uncomplicated failures with the same ACT used for the primary episode, compared with other rescue treatments. Methods This was a bicentre, open-label, randomised, three-arm phase 3 trial done in Lisungi health centre in DR Congo, and Kazo health centre in Uganda in 2012–14. Children aged 12–60 months with recurrent malaria infection after treatment with the fi rst-line ACT were randomly assigned to either re-treatment with the same fi rst-line ACT, an alternative ACT, which were given for 3 days, or quinine-clindamycin (QnC), which was given for 5–7 days, following a 2:2:1 ratio. Randomisation was done by computer-generated randomisation list in a block design by country. The three treatment groups were assumed to have equivalent effi cacy above 90%. Both the research team and parents or guardians were aware of treatment allocation. The primary outcome was the proportion of patients with an adequate clinical and parasitological response (ACPR) at day 28, in the per-protocol population. This trial was registered under the numbers NCT01374581 in ClinicalTrials.gov and PACTR201203000351114 in the Pan African Clinical Trials Registry. Findings From May 22, 2012, to Jan 31, 2014, 571 children were included in the trial. 240 children were randomly assigned to the re-treatment ACT group, 233 to the alternative ACT group, and 98 to the QnC group. 500 children were assessed for the primary outcome. 71 others were not included because they did not complete the follow-up or PCR genotyping result was not conclusive. The ACPR response was similar in the three groups: 91·4% (95% CI 87·5–95·2) for the re-treatment ACT, 91·3% (95% CI 87·4–95·1) for the alternative ACT, and 89·5% (95% CI 83·0–96·0) for QnC. The estimates for rates of malaria recrudescence in the three treatment groups were similar (log-rank test: χÂČ=0·22, p=0·894). Artemether-lumefantrine was better tolerated than QnC (p=0·0005) and artesunateamodiaquine (p<0·0001) in the modifi ed intention-to-treat analysis. No serious adverse events were observed. The most common adverse events reported in the re-treatment ACT group were anorexia (31 [13%] of 240 patients), asthenia (20 [8%]), coughing (16 [7%]), abnormal behaviour (13 [5%]), and diarrhoea (12 [5%]). Anorexia (13 [6%] of 233 patients) was the most frequently reported adverse event in the alternative ACT group. The most commonly reported adverse events in the QnC group were anorexia (12 [12%] of 98 patients), abnormal behaviour (6 [6%]), asthenia (6 [6%]), and pruritus (5 [5%]). Interpretation Re-treatment with the same ACT shows similar effi cacy as recommended rescue treatments and could be considered for rescue treatment for Plasmodium falciparum malaria. However, the eff ect of this approach on the selection of resistant strains should be monitored to ensure that re-treatment with the same ACT does not contribute to P falciparum resistance

    Experimental Induction of Paromomycin Resistance in Antimony-Resistant Strains of L. donovani: Outcome Dependent on In Vitro Selection Protocol

    Get PDF
    Paromomycin (PMM) has recently been introduced for treatment of visceral leishmaniasis in India. Although no clinical resistance has yet been reported, proactive vigilance should be warranted. The present in vitro study compared the outcome and stability of experimental PMM-resistance induction on promastigotes and intracellular amastigotes. Cloned antimony-resistant L. donovani field isolates from India and Nepal were exposed to stepwise increasing concentrations of PMM (up to 500 ”M), either as promastigotes or intracellular amastigotes. One resulting resistant strain was cloned and checked for stability of resistance by drug-free in vitro passage as promastigotes for 20 weeks or a single in vivo passage in the golden hamster. Resistance selection in promastigotes took about 25 weeks to reach the maximal 97 ”M inclusion level that did not affect normal growth. Comparison of the IC50 values between the parent and the selected strains revealed a 9 to 11-fold resistance for the Indian and 3 to 5-fold for the Nepalese strains whereby the resistant phenotype was also maintained at the level of the amastigote. Applying PMM pressure to intracellular amastigotes produced resistance after just two selection cycles (IC50 = 199 ”M) compared to the parent strain (IC50 = 45 ”M). In the amastigote-induced strains/clones, lower PMM susceptibilities were seen only in amastigotes and not at all in promastigotes. This resistance phenotype remained stable after serial in vitro passage as promastigote for 20 weeks and after a single in vivo passage in the hamster. This study clearly demonstrates that a different PMM-resistance phenotype is obtained whether drug selection is applied to promastigotes or intracellular amastigotes. These findings may have important relevance to resistance mechanism investigations and the likelihood of resistance development and detection in the field

    Antikinetoplastid SAR study in 3-nitroimidazopyridine series:identification of a novel non-genotoxic and potent anti-T. b. brucei hit-compound with improved pharmacokinetic properties.

    Get PDF
    International audienceTo study the antikinetoplastid 3-nitroimidazo[1,2-a]pyridine pharmacophore, a structure-activity relationship study was conducted through the synthesis of 26 original derivatives and their in vitro evaluation on both Leishmania spp and Trypanosoma brucei brucei. This SAR study showed that the antitrypanosomal pharmacophore was less restrictive than the antileishmanial one and highlighted positions 2, 6 and 8 of the imidazopyridine ring as key modulation points. None of the synthesized compounds allowed improvement in antileishmanial activity, compared to previous hit molecules in the series. Nevertheless, compound 8, the best antitrypanosomal molecule in this series (EC50 = 17 nM, SI = 2650 & E° = −0.6 V), was not only more active than all reference drugs and previous hit molecules in the series but also displayed improved aqueous solubility and better in vitro pharmacokinetic characteristics: good microsomal stability (T1/2 > 40 min), moderate albumin binding (77%) and moderate permeability across the blood brain barrier according to a PAMPA assay. Moreover, both micronucleus and comet assays showed that nitroaromatic molecule 8 was not genotoxic in vitro. It was evidenced that bioactivation of molecule 8 was operated by T. b. brucei type 1 nitroreductase, in the same manner as fexinidazole. Finally, a mouse pharmacokinetic study showed that 8 displayed good systemic exposure after both single and repeated oral administrations at 100 mg/kg (NOAEL) and satisfying plasmatic half-life (T1/2 = 7.7 h). Thus, molecule 8 appears as a good candidate for initiating a hit to lead drug discovery program

    In Vitro Sensitivity Testing of Leishmania Clinical Field Isolates: Preconditioning of Promastigotes Enhances Infectivity for Macrophage Host Cells▿

    No full text
    Diagnostic material from patients with leishmaniasis is generally available as promastigotes, and proper testing for susceptibility to first-line drugs by the intracellular amastigote assay is frequently hampered by the poor infectivity of the promastigotes for the macrophage host cell. Several conditions for optimization of the in vitro metacyclogenesis and cell infectivity of Leishmania donovani, L. guyanensis, and L. braziliensis field strains obtained from patients receiving standard antimony medication were investigated. Triggering log-phase promastigotes to become amastigote-like by increasing the temperature or acidifying the culture medium was not successful. Adequate metacyclogenesis and the highest levels of macrophage infection were obtained after 5-day-old late-log-phase promastigote cultures were preconditioned at 25°C to pH 5.4 for 24 h in Schneider's medium prior to infection. The susceptibility assay with primary peritoneal mouse macrophages included pentavalent antimony (SbV; sodium stibogluconate), trivalent antimony (SbIII; potassium antimonyl tartrate), miltefosine, and the experimental drug PX-6518. All strains were sensitive to miltefosine (50% inhibitory concentration [IC50] < 10 ΌM) and PX-6518 (IC50 < 2 Όg/ml) but showed distinct susceptibility to SbV and/or SbIII, depending on whether they were derived from cured, relapse, or nonresponder patients. Within the available set of Leishmania species and strains, simultaneous SbV-SbIII resistance was clearly associated with treatment failure; however, a larger set of isolates is still needed to judge the predictive value of SbV-SbIII susceptibility profiling on treatment outcome. In conclusion, the proposed conditioning protocol further contributes toward a more standardized laboratory model for evaluation of the drug sensitivities of field isolates

    In Vitro Susceptibilities of Leishmania donovani Promastigote and Amastigote Stages to Antileishmanial Reference Drugs: Practical Relevance of Stage-Specific Differences▿

    No full text
    The in vitro susceptibilities of the reference strain Leishmania donovani MHOM/ET/67/L82 to sodium stibogluconate, amphotericin B, miltefosine, and the experimental compound PX-6518 were determined for extracellular log-phase promastigotes, established axenic amastigotes, fresh spleen-derived amastigotes, and intracellular amastigotes in primary mouse peritoneal macrophages. Susceptibility to amphotericin B did not differ across the various axenic models (50% inhibitory concentrations [IC50], 0.6 to 0.7 ÎŒM), and amphotericin B showed slightly higher potency against intracellular amastigotes (IC50, 0.1 to 0.4 ÎŒM). A similar trend was observed for miltefosine, with comparable efficacies against the extracellular (IC50, 0.4 to 3.8 ÎŒM) and intracellular (IC50, 0.9 to 4.3 ÎŒM) stages. Sodium stibogluconate, used either as Pentostam or as a crystalline substance, was inactive against all axenic stages (IC50, >64 ÎŒg SbV/ml) but showed good efficacy against intracellular amastigotes (IC50, 22 to 28 ÎŒg SbV/ml); the crystalline substance was about two to three times more potent (IC50, 9 to 11 ÎŒg SbV/ml). The activity profile of PX-6518 was comparable to that of sodium stibogluconate, but at a much higher potency (IC50, 0.1 ÎŒg/ml). In conclusion, the differential susceptibility determines which in vitro models are appropriate for either drug screening or resistance monitoring of clinical field isolates. Despite the more complex and labor-intensive protocol, the current results support the intracellular amastigote model as the gold standard for in vitro Leishmania drug discovery research and for evaluation of the resistance of field strains, since it also includes host cell-mediated effects. Axenic systems can be recommended only for compounds for which no cellular mechanisms are involved, for example, amphotericin B and miltefosine

    Asymptomatic Plasmodium falciparum infection is associated with anaemia in pregnancy and can be more cost-effectively detected by rapid diagnostic test than by microscopy in Kinshasa, Democratic Republic of the Congo

    Get PDF
    BACKGROUND: In areas of high malaria transmission, Plasmodium falciparum infection during pregnancy is characterized by malaria-related anaemia, placental malaria and does not always result in clinical symptoms. This situation is associated with poor pregnancy outcomes. The aim of this study was to determine the extent of asymptomatic P. falciparum infection, its relation with anaemia as well as the most cost-effective technique for its diagnosis in healthy pregnant women living in Kinshasa, Democratic Republic of the Congo. METHODS: In a cross-sectional study design, information on socio-demographic characteristics and cost data were collected in healthy pregnant women attending antenatal care consultations. Plasmodium falciparum infection was diagnosed using rapid diagnostic test (RDT), microscopy and polymerase chain reaction (PCR). Haemoglobin concentration was also determined. RESULTS: In total, 332 pregnant women were enrolled. RDT and microscopy data were available for all the blood samples and 166 samples were analysed by PCR. The prevalence of asymptomatic P. falciparum infection using microscopy, RDTs and PCR, were respectively 21.6%, 27.4% and 29.5%. Taking PCR as a reference, RDTs had a sensitivity of 81.6% and a specificity of 94.9% to diagnose asymptomatic P. falciparum infection. The corresponding values for microscopy were 67.3% and 97.4%. The prevalence of anaemia was 61.1% and asymptomatic malaria increased five times the odds (p < 0.001) of having anaemia. RDTs were more cost-effective compared to microscopy. Incremental cost-effectiveness ratio was US$ 63.47 per microscopy adequately diagnosed case. CONCLUSION: These alarming results emphasize the need to actively diagnose and treat asymptomatic malaria infection during all antenatal care visits. Moreover, in DRC, malaria and anaemia control efforts should be strengthened by promoting the use of insecticide-treated nets, intermittent preventive treatment with sulphadoxine-pyrimethamine and iron and folic acid supplements
    • 

    corecore