90 research outputs found

    Can we use ice sheet reconstructions to constrain meltwater for deglacial simulations?

    Get PDF
    Freshwater pulses from melting ice sheets are thought to be important for driving deglacial climate variability. This study investigates challenges in simulating and understanding deglacial climate evolution within this framework, with emphasis on uncertainties in the ocean overturning sensitivity to meltwater inputs. The response of an intermediate complexity model to a single Northern Hemisphere meltwater pulse is familiar: a weakening of the ocean overturning circulation in conjunction with an expansion of sea ice cover and a meridional temperature seesaw. Nonlinear processes are vital in shaping this response and are found to have a decisive influence when more complex scenarios with a history of pulses are involved. A meltwater history for the last deglaciation (21–9 ka) was computed from the ICE‐5G ice sheet reconstruction, and the meltwater was routed into the ocean through idealized ice sheet drainages. Forced with this meltwater history, model configurations with altered freshwater sensitivity produce a range of outcomes for the deglaciation, from those in which there is a complete collapse of the overturning circulation to those in which the overturning circulation weakens slightly. The different outcomes are interpreted in terms of the changing hysteresis behavior of the overturning circulation (i.e., non‐stationary freshwater sensitivity) as the background climate warms through the course of the deglaciation. The study illustrates that current uncertainties in model sensitivity are limiting in efforts to forward‐model deglacial climate variability. Furthermore, ice sheet reconstructions are shown to provide poor constraints on meltwater forcing for simulating the deglaciation.publishedVersio

    Pacific contribution to decadal surface temperature trends in the Arctic during the twentieth century

    Get PDF
    Instrumental records suggest multidecadal variability in Arctic surface temperature throughout the twentieth century. This variability is caused by a combination of external forcing and internal variability, but their relative importance remains unclear. Since the early twentieth century Arctic warming has been linked to decadal variability in the Pacific, we hypothesize that the Pacific could impact decadal temperature trends in the Arctic throughout the twentieth century. To investigate this, we compare two ensembles of historical all-forcing twentieth century simulations with the Norwegian Earth System Model (NorESM): (1) a fully coupled ensemble and (2) an ensemble where momentum flux anomalies from reanalysis are prescribed over the Indo-Pacific Ocean to constrain Pacific sea surface temperature variability. We find that the combined effect of tropical and extratropical Pacific decadal variability can explain up to ~ 50% of the observed decadal surface temperature trends in the Arctic. The Pacific-Arctic connection involves both lower tropospheric horizontal advection and subsidence-induced adiabatic heating, mediated by Aleutian Low variations. This link is detected across the twentieth century, but the response in Arctic surface temperature is moderated by external forcing and surface feedbacks. Our results also indicate that increased ocean heat transport from the Atlantic to the Arctic could have compensated for the impact of a cooling Pacific at the turn of the twenty-first century. These results have implications for understanding the present Arctic warming and future climate variations.publishedVersio

    Riverine impact on future projections of marine primary production and carbon uptake

    Get PDF
    Riverine transport of nutrients and carbon from inland waters to the coastal and finally the open ocean alters marine primary production (PP) and carbon (C) uptake regionally and globally. So far, this process has not been fully represented and evaluated in the state-of-the-art Earth system models. Here we assess changes in marine PP and C uptake projected under the Representative Concentration Pathway 4.5 climate scenario using the Norwegian Earth system model, with four riverine transport configurations for nutrients (nitrogen, phosphorus, silicon, and iron), carbon, and total alkalinity: deactivated, fixed at a recent-past level, coupled to simulated freshwater runoff, and following four plausible future scenarios. The inclusion of riverine nutrients and carbon at the 1970 level improves the simulated contemporary spatial distribution of annual mean PP and air–sea CO2 fluxes relative to observations, especially on the continental margins (5.4 % reduction in root mean square error (RMSE) for PP) and in the North Atlantic region (7.4 % reduction in RMSE for C uptake). While the riverine nutrients and C input is kept constant, its impact on projected PP and C uptake is expressed differently in the future period from the historical period. Riverine nutrient inputs lessen nutrient limitation under future warmer conditions as stratification increases and thus lessen the projected decline in PP by up to 0.66 ± 0.02 Pg C yr−1 (29.5 %) globally, when comparing the 1950–1999 with the 2050–2099 period. The riverine impact on projected C uptake depends on the balance between the net effect of riverine-nutrient-induced C uptake and riverine-C-induced CO2 outgassing. In the two idealized riverine configurations the riverine inputs result in a weak net C sink of 0.03–0.04 ± 0.01 Pg C yr−1, while in the more plausible riverine configurations the riverine inputs cause a net C source of 0.11 ± 0.03 Pg C yr−1. It implies that the effect of increased riverine C may be larger than the effect of nutrient inputs in the future on the projections of ocean C uptake, while in the historical period increased nutrient inputs are considered the largest driver. The results are subject to model limitations related to resolution and process representations that potentially cause underestimation of impacts. High-resolution global or regional models with an adequate representation of physical and biogeochemical shelf processes should be used to assess the impact of future riverine scenarios more accurately.publishedVersio

    Impact of ocean and sea ice initialisation on seasonal prediction skill in the Arctic

    Get PDF
    There is a growing demand for skillful prediction systems in the Arctic. Using the Norwegian Climate Prediction Model (NorCPM) that combines the fully-coupled Norwegian Earth System Model and the Ensemble Kalman filter, we present a system that performs both, weakly-coupled data assimilation (wCDA) when assimilating ocean hydrogaphy (by updating the ocean alone) and strongly-coupled data assimilation (sCDA) when assimilating sea ice concentration (SIC) (by jointly updating the sea ice and ocean). We assess the seasonal prediction skill of this version of NorCPM, the first climate prediction system using sCDA, by performing retrospective predictions (hindcasts) for the period 1985 to 2010. To better understand origins of the prediction skill of Arctic sea ice, we compare this version with a version that solely performs wCDA of ocean hydrography. The reanalysis that assimilates just ocean data, exhibits a skillful hydrography in the upper Arctic ocean, and features an improved sea ice state, such as improved summer SIC in the Barents Sea, or reduced biases in sea ice thickness. Skillful prediction of SIE up to 10-12 lead months are only found during winter in regions of a relatively deep ocean mixed layer outside the Arctic basin. Additional DA of SIC data notably further corrects the initial sea ice state, confirming the applicability of the results of Kimmritz et al. (2018) in a historical setting. The resulting prediction skill of SIE is widely enhanced compared to predictions initialised through wCDA of only ocean data. Particularly high skill is found for July-initialised autumn SIE predictions.publishedVersio

    Potential Influences of Volcanic Eruptions on Future Global Land Monsoon Precipitation Changes

    Get PDF
    The global monsoon system is of exceptional socioeconomic importance owing to its impacts on two-thirds of the globe’s population. Major volcanic eruptions strongly influence global land monsoon (GLM) precipitation change. By using 60 plausible eruption scenarios sampled from reconstructed volcanic proxies over the past 2,500 years, 21st century volcanic influences on GLM precipitation projections are examined with an Earth system model under a moderate emission scenario. The decadal-scale ensemble spread with realistic eruptions (VOLC) increases by 17.5% and 20.1% compared to no-volcanic (NO-VOLC) and constant background-volcanic (VOLC-CONST) scenarios, respectively. Compared with NO-VOLC, the centennial mean VOLC GLM precipitation shows a 10% overall reduction and regionally, Asia is the most impacted. Changes in atmospheric circulation in the aftermath of large volcanic eruptions match the global warming response patterns well with opposite sign, with the North American monsoon precipitation enhanced following large volcanic eruptions, which is in sharp contrast to the robust decrease in Asian monsoon rainfall. Volcanic activity could delay the time of emergence of anthropogenic influence by five years on average over about 60% of the GLM area. Our results demonstrate the importance of statistical representation of potential volcanism for the projections of future monsoon variability. Quantifying volcanic impacts on regional climate projections and their socioeconomic influences on infrastructure planning, food security, and disaster management should be a priority of future work.publishedVersio

    Causes of the large warm bias in the Angola–Benguela Frontal Zone in the Norwegian Earth System Model

    Get PDF
    We have investigated the causes of the sea surface temperature (SST) bias in the Angola–Benguela Frontal Zone (ABFZ) of the southeastern Atlantic Ocean simulated by the Norwegian Earth System Model (NorESM). Similar to other coupled-models, NorESM has a warm SST bias in the ABFZ of up to 8 °C in the annual mean. Our analysis of NorESM reveals that a cyclonic surface wind bias over the ABFZ drives a locally excessively strong southward (0.05 m/s (relative to observation)) Angola Current displacing the ABFZ southward. A series of uncoupled stand-alone atmosphere and ocean model simulations are performed to investigate the cause of the coupled model bias. The stand-alone atmosphere model driven with observed SST exhibits a similar cyclonic surface circulation bias; while the stand-alone ocean model forced with the reanalysis data produces a warm SST in the ABFZ with a magnitude approximately half of that in the coupled NorESM simulation. An additional uncoupled sensitivity experiment shows that the atmospheric model’s local negative surface wind curl generates anomalously strong Angola Current at the ocean surface. Consequently, this contributes to the warm SST bias in the ABFZ by 2 °C (compared to the reanalysis forced simulation). There is no evidence that local air-sea feedbacks among wind stress curl, SST, and sea level pressure (SLP) affect the ABFZ SST bias. Turbulent surface heat flux differences between coupled and uncoupled experiments explain the remaining 2 °C warm SST bias in NorESM. Ocean circulation, upwelling and turbulent heat flux errors all modulate the intensity and the seasonality of the ABFZ errors.publishedVersio

    Evaluation of NorESM-OC (versions 1 and 1.2), the ocean carbon-cycle stand-alone configuration of the Norwegian Earth System Model (NorESM1)

    Get PDF
    Idealised and hindcast simulations performed with the stand-alone ocean carbon-cycle configuration of the Norwegian Earth System Model (NorESM-OC) are described and evaluated. We present simulation results of two different model versions at different grid resolutions and using two different atmospheric forcing data sets. Model version NorESM-OC1 corresponds to the version that is included in the fully coupled model NorESM-ME1, which participated in CMIP5. The main update between NorESM-OC1 and NorESM-OC1.2 is the addition of two new options for the treatment of sinking particles. We find that using a constant sinking speed, which has been the standard in NorESM's ocean carbon cycle module HAMOCC (HAMburg Ocean Carbon Cycle model) does not transport enough particulate organic carbon (POC) into the deep ocean below approximately 2000 m depth. The two newly implemented parameterisations, a particle aggregation scheme with prognostic sinking speed, and a simpler scheme prescribing a linear increase of sinking speed with depth, provide better agreement with observed POC fluxes. Additionally, reduced deep ocean biases of oxygen and remineralised phosphate indicate a better performance of the new parameterisations. For model version 1.2, a re-tuning of the ecosystem parameterisation has been performed, which (i) reduces previously too high primary production in high latitudes, (ii) consequently improves model results for surface nutrients, and (iii) reduces alkalinity and dissolved inorganic carbon biases at low latitudes. We use hindcast simulations with prescribed observed and constant (pre-industrial) atmospheric CO2 concentrations to derive the past and contemporary ocean carbon sink. For the period 1990–1999 we find an average ocean carbon uptake ranging from 2.01 to 2.58 Pg C yr-1 depending on model version, grid resolution and atmospheric forcing data set

    Ocean biogeochemistry in the Norwegian Earth System Model version 2 (NorESM2)

    Get PDF
    The ocean carbon cycle is a key player in the climate system through its role in regulating the atmospheric carbon dioxide concentration and other processes that alter the Earth's radiative balance. In the second version of the Norwegian Earth System Model (NorESM2), the oceanic carbon cycle component has gone through numerous updates that include, amongst others, improved process representations, increased interactions with the atmosphere, and additional new tracers. Oceanic dimethyl sulfide (DMS) is now prognostically simulated and its fluxes are directly coupled with the atmospheric component, leading to a direct feedback to the climate. Atmospheric nitrogen deposition and additional riverine inputs of other biogeochemical tracers have recently been included in the model. The implementation of new tracers such as “preformed” and “natural” tracers enables a separation of physical from biogeochemical drivers as well as of internal from external forcings and hence a better diagnostic of the simulated biogeochemical variability. Carbon isotope tracers have been implemented and will be relevant for studying long-term past climate changes. Here, we describe these new model implementations and present an evaluation of the model's performance in simulating the observed climatological states of water-column biogeochemistry and in simulating transient evolution over the historical period. Compared to its predecessor NorESM1, the new model's performance has improved considerably in many aspects. In the interior, the observed spatial patterns of nutrients, oxygen, and carbon chemistry are better reproduced, reducing the overall model biases. A new set of ecosystem parameters and improved mixed layer dynamics improve the representation of upper-ocean processes (biological production and air–sea CO2 fluxes) at seasonal timescale. Transient warming and air–sea CO2 fluxes over the historical period are also in good agreement with observation-based estimates. NorESM2 participates in the Coupled Model Intercomparison Project phase 6 (CMIP6) through DECK (Diagnostic, Evaluation and Characterization of Klima) and several endorsed MIP simulations.publishedVersio

    Global Freshwater availability below normal conditions and population impact under 1.5°C and 2°C stabilization scenarios

    Get PDF
    Based on the large ensembles of the half a degree additional warming, prognosis, and projected impacts historical, +1.5 and +2 °C experiments, we quantify changes in the magnitude of water availability (i.e., precipitation minus actual evapotranspiration; a function of monthly precipitation flux, latent heat flux, and surface air temperature) below normal conditions (less than median, e.g., 20th percentile water availability). We found that, relative to the historical experiment, water availability below normal conditions of the +1.5 and +2 °C experiments would decrease in the midlatitudes and the tropics, indicating that hydrological drought is likely to increase in warmer worlds. These cause more (less) people in East Asia, Central Europe, South Asia, and Southeast Asia (West Africa and Alaska/Northwest Canada) to be exposed to water shortage. Stabilizing warming at 1.5 °C instead of 2 °C would limit population impact in most of the regions, less effective in Alaska/Northwest Canada, Southeast Asia, and Amazon. Globally, this reduced population impact is ~117 million people

    Propagation of Thermohaline Anomalies and their predictive potential along the Atlantic water pathway

    Get PDF
    We assess to what extent seven state-of-the-art dynamical prediction systems can retrospectively predict winter sea surface temperature (SST) in the subpolar North Atlantic and the Nordic seas in the period 1970–2005. We focus on the region where warm water flows poleward (i.e., the Atlantic water pathway to the Arctic) and on interannual-to-decadal time scales. Observational studies demonstrate predictability several years in advance in this region, but we find that SST skill is low with significant skill only at a lead time of 1–2 years. To better understand why the prediction systems have predictive skill or lack thereof, we assess the skill of the systems to reproduce a spatiotemporal SST pattern based on observations. The physical mechanism underlying this pattern is a propagation of oceanic anomalies from low to high latitudes along the major currents, the North Atlantic Current and the Norwegian Atlantic Current. We find that the prediction systems have difficulties in reproducing this pattern. To identify whether the misrepresentation is due to incorrect model physics, we assess the respective uninitialized historical simulations. These simulations also tend to misrepresent the spatiotemporal SST pattern, indicating that the physical mechanism is not properly simulated. However, the representation of the pattern is slightly degraded in the predictions compared to historical runs, which could be a result of initialization shocks and forecast drift effects. Ways to enhance predictions could include improved initialization and better simulation of poleward circulation of anomalies. This might require model resolutions in which flow over complex bathymetry and the physics of mesoscale ocean eddies and their interactions with the atmosphere are resolved.publishedVersio
    corecore