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Abstract Whilst climate change is expected to accelerate the hydrological cycle, it is 

not clear how the renewable freshwater availability below normal (a form of 

extremes or drought, e.g., low runoff) conditions and societal impact would change 

globally and regionally. Recent call for reporting naturally occurring drought with 

anthropogenic water shortage and the need for new scientific knowledge around the 

warming targets (1.5˚C, 2˚C) prompts us to tackle this challenge. Based on the large 

ensembles of the HAPPI experiments (historical, +1.5˚C, +2˚C experiments), we 

evaluate how the magnitude of freshwater availability at low runoff (i.e., Q20, Q10, Q5) 

would change in the future period. We found that, relative to the historical period, 

the multi-model ensemble mean of low runoff would decline in the mid-latitudes 

and the tropics. Whilst the geographic pattern of changes in low runoff for the +2˚C 

experiment (changes are more intense but not always) is quite close to that of +1.5˚C 

experiment, a 1.5˚C warming target is more likely to reduce drought risk triggered by 

low runoff conditions at both global and regional scales. Relative to the historical 

period, an additional ~12 million people would be adversely affected by water 

shortages if we stabilised climate at 2˚C over 1.5˚C. Regionally, more people in East 

Asia, South Asia, Southern Europe and Mediterranean, Central Europe and Southeast 

Asia would be exposed to water shortage; less in West Africa, West Coast of South 

America, Alaska/Northwest Canada. Stabilising warming at 1.5˚C instead of 2˚C 

would constrain adverse impact on people suffering water shortages in most of the 

regions but less effective in Southeast Asia, Alaska/Northwest Canada, few Latin 

America regions (Amazon, West Coast South America). 

Keywords: global scale, freshwater shortage, low runoff, 1.5˚C warming, population 

 



1. Introduction 

Securing adequate renewable freshwater supply (i.e., net of precipitation minus 

evapotranspiration) is vital for sustaining human activities (e.g., agricultural 

production, industrial, domestic water consumptions) and environmental 

requirement (Falkenmark 1989, Rijsberman 2006). Whilst the global-mean 

hydrological cycle is anticipated to intensify with global warming (Oki and Kanae 

2006, Lim and Roderick 2009, Roderick et al 2012), changing distribution of 

renewable freshwater across space and time albeit with large uncertainty (Jimenez 

Cisneros et al 2014, Prudhomme et al 2014) adds to the concern on freshwater 

supply (World Economic Forum 2015, Liu et al 2017, Vorosmarty et al 2010) and its 

risk on national food security, economic prosperity and societal well-being 

(Rijsberman 2006, Mekonnen and Hoekstra 2016). To minimise these uncertainty 

along with climate extremes in an interfered climate system (Tschakert 2015), official 

agreement has been reached to hold global warming at less than 2˚C above 

pre-industrial levels with possible adoption of the 1.5˚C target (UNFCCC Conference 

of the Parties 2015). 

 

The lack of scientific literature to inform climate policy about differences between 

these specified warming targets (i.e., 1.5˚C and 2˚C) has called for new form of 

analyses to support an IPCC special report on “Global warming of 1.5˚C” in 2018 

(Mitchell et al 2016, Hulme 2016, Schleussner et al 2016, Peters 2016, Seneviratne et 

al 2016). In response to this call and the recent proposal for broadening the 

definition of drought to include shortage cause and modified by human process in 

the anthropocene (Van Loon 2015; Van Loon et al 2016), we put forward some 



relevant questions including: How would global renewable freshwater below normal 

conditions (as a form of extremes) change at these global warming targets? How 

would they affect the water shortage of society? Could we avoid/reduce the impact 

and risk at 1.5˚C relative to 2˚C? The ‘attribution-style’ (Allen 2003) climate 

experiments -- half a degree additional warming, prognosis and projected impacts 

(HAPPI, link: http://www.happimip.org/), explicitly designed to differentiate impacts 

between these global warming targets (i.e., 1.5˚C and 2˚C worlds) using large 

ensembles and the fact that they are not transient (Mitchell et al 2017) allow to gain 

new insights on these questions relative to the earlier climate experiments, e.g., the 

Couple Model Intercomparison Project Phase 3 (CMIP3) (e.g., Arnell 2004, Fung et al 

2011, Murray et al 2012), CMIP5 (e.g., Hanasaki et al 2013, Arnell and Lloyd-Hughes 

2014) and the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) 

(Prudhomme et al 2014, Schewe et al 2014, Veldkamp et al 2016). 

 

Here we aim to address these freshwater availability questions (above) as part of 

contribution towards the upcoming IPCC special report. To do that, we use 

atmosphere-only global circulation models (AGCMs) output from HAPPI experiments, 

global hydrological product from a climate data record and global population data 

that is consistent with World Bank (constant 2005) (CIESIN 2005, Lim et al in review) 

(we do not account for future population growth in this study). We evaluate how the 

magnitude of freshwater availability below normal (e.g., low runoff) conditions in the 

future period (1.5˚C and 2˚C) would change relative to the historic period. From there, 

we estimate the number of people affected by freshwater shortage on population in 

the historic and future periods. We present these results on global and 

http://www.happimip.org/


sub-continental scales consistent with IPCC (2012) and make inference to previous 

studies. 

 

2. Data and Methods 

2.1 Data 

The overall approach of current study is illustrated in Figure 1. Firstly, we obtain 

AGCMs output from the Tier 1 experiments of the HAPPI archive. Briefly, the Tier 1 

experiments consist of multiple runs (50-100 ensembles) for three 10-year period 

experiments: (i) a historical period (2006-2015; hereafter referred to as ‘historical 

experiment’), (ii) a future period at 1.5˚C above the pre-industrial levels (2106-2115; 

hereafter referred to as ‘+1.5˚C experiment’) and (iii) a future period at 2˚C above the 

pre-industrial levels (2106-2115; hereafter referred to as ‘+2˚C experiment’). Within 

each experiment, each run distinguishes itself from others in terms of its initial 

weather state, thus provides large samples per experiment to support multi-year 

event analysis (see details in Mitchell et al 2017). We select the AGCM that fulfills 

these criteria: (i) monthly precipitation flux (pr, kg m-2 s-1), (ii) monthly latent heat 

flux (hfls, W m-2), (iii) monthly surface air temperature (tas, K) and (iv) the first 50 

ensembles are available for all the Tier 1 experiments. Following this, we get five 

AGCMs (CanAM4, ECHAM6-3-LR, ETH-CAM4-2degree, MIROC5, NorESM1-HAPPI) 

with sufficient samples (50 ensembles x 10 years x 12 months = 6000 monthly 

samples per AGCM) per experiment (see Table S1). To enable consistent analysis 

across all AGCMs and the baseline period (see next paragraph), we rescale them to a 

spatial resolution of 0.5˚ x 0.5˚ using bilinear interpolation. 

 



We use the runoff of the climate data record (CDR) (Zhang et al 2017) for the global 

terrestrial water budget (spatial resolution: 0.5˚ × 0.5˚, temporal resolution: monthly, 

time period: 1984-2010) to represent that of the baseline (27 years x 12 months = 

324 monthly samples). The CDR is an optimised estimation of terrestrial water 

budget through merging in-situ observations, satellite remote sensing, reanalysis and 

land surface model outputs using data assimilation techniques. It has been validated 

against in-situ discharge measurements obtained from the Global Runoff Data Centre 

(GRDC) and the United States Geological Survey (USGS) (Zhang et al 2017). 

 

We apply a recently prepared World Bank adjusted global population map (constant 

2005) (Lim et al in review). Shortly, a population distribution map (year: 2005, spatial 

resolution: 2.5’x2.5’) was obtained from the Gridded Population of the World version 

3 (GPWv3) (CIESIN 2005). The ratio of country population from the World Bank (2005) 

to the sum of distributed population of each country from the GPWv3 was calculated, 

and then multiplied with the population distribution of each country in GPWv3 in 

order to produce the final product (data not available for French Guiana, Taiwan, 

Western Sahara). Here we rescale this final product to a spatial resolution of 0.5˚ x 

0.5˚. 

<Figure 1, here, thanks> 

 

2.2 Methods 

From the AGCMs output (Table S1), we calculate the monthly runoff (Q, mm d-1) at 

each grid-cell as, 

Q =
86400000

𝜌𝑊
(𝑝𝑟 −

ℎ𝑓𝑙𝑠

𝜆𝑊
)       (1) 



where 𝜌𝑊 (kg m-3) is the density of liquid water (≈1000 kg m-3) and λ𝑊 (J kg-1) is 

the latent heat of vapourisation. Following Allen et al. (1998), we calculate λ𝑊 as, 

𝜆𝑊 = 2.501 × 106 − 2361(𝑡𝑎𝑠 − 273.15)   (2) 

From these equations, we prepare the monthly runoff for the historical and future 

periods (Qhis and Qfut, respectively). 

 

Without subscribing to any specific statistical distribution, we use percentile (e.g., xth 

percentile) as one way to set the low runoff conditions for both historical and future 

periods (i.e., Qhis,x and Qfut,x, respectively). To compare them, we compute the 

percentile in the historical period for monthly runoff Qhis,(fut,x) corresponding to the 

future period Qfut,x . If the computed percentile of Qhis,(fut,x) is lower (higher) than 

Qfut,x , then Qfut,x is drier (wetter) than Qhis,x . If the computed percentile of Qhis,(fut,x) 

equates Qfut,x , then Qfut,x is identical to Qhis,x (refer to Figure 1 for better illustration). 

 

From literature, we confirmed that the 20th percentile (Q20; a value being equaled or 

exceeded 80% of the time) is a commonly used threshold in large scale hydrologic 

investigations (i.e., hydrological drought, water scarcity) (Andreadis et al, 2005, 

Sheffield et al 2009, van Huijgevoort et al 2013). Hence we set x = 20 (in the previous 

paragraph) for our analysis throughout the main text. For each AGCM, we calculate 

the Q20 at each grid-cell (50 ensembles x 10 years x 12 months = 6000 samples) 

across all experiments (i.e., historical, +1.5˚C and +2˚C experiments). To generalise 

them, we calculate the ensemble mean of all AGCMs and model consistency. To test 

the robustness of our findings, we repeat the analysis using lower thresholds (e.g., 

Q10, Q5) in Supplementary Information. 



 

For each AGCM per experiment, we quantify the people affected by water shortage 

per grid-cell as (water supply – water demand threshold x population per 

grid-cell)/(water demand per capita). To calculate the water supply at low runoff 

conditions, we first remove the bias of the runoff through matching the percentile of 

the AGCM runoff (by setting x=20 in Qhis,(fut,x) and Qfut,x) with that of the baseline (see 

second paragraph in Section 2.1) in order to get the CDR runoff. We compute the 

water supply as (runoff x grid-cell area, m3 day-1). Following the Falkenmark water 

stress indicator (e.g., Falkenmark et al 1989, 2013), we set the water demand 

threshold at 1700 m3 capita-1 year-1 (results in main text) and 1000 m3 capita-1 year-1 

(results in Supplementary Information), respectively. We aggregate them to 

sub-continental and global scales and calculate the change in affected population 

from the historical period to the future period (i.e., Δ(fut+1.5-his), Δ(fut+2.0-his)) (Note: 

Negative (positive) number means that people adversely affected by water shortage 

would increase (decrease)). 

 

3. Projections of low runoff 

The multi-model ensemble mean percentile in the historical period for monthly 

runoff corresponding to the future period Q20 (+1.5˚C, +2˚C experiments) show some 

robust large-scale features (Figure 2). For the +1.5˚C experiment, the low runoff 

would increase at high latitudes in the Northern Hemisphere and Sahara (in relative 

sense); decrease in the mid-latitudes (e.g., Central Asia, West Asia and East Asia, 

middle and south of North America) and the tropics (e.g., parts of Amazon basin, 

north of Chile, southeastern Brazil, Malaysia, Indonesia, Thailand, Cambodia, 



Vietnam, Laos, New Guinea, Kenya, Tanzania, Gabon, Congo and Democratic Republic 

of Congo). Whilst the geographic pattern of changes in low runoff for the +2˚C 

experiment is quite close to that of +1.5˚C experiment, we notice that the magnitude 

of change would intensify (in both directions) except for Sahara, Malaysia and 

Indonesia. We repeat similar process at lower thresholds (Q10, Q5) and find that the 

spatial pattern of the changes (drier/wetter) are not sensitive to the threshold (whilst 

the magnitude would vary) (Figures S1-S2 in Supplementary Information), confirming 

the robustness of these projections. More generally, they imply that the magnitude 

of droughts arising from low runoff conditions would be less severe in most parts of 

the world (except for the Malaysia and Indonesia) should we pursue climate change 

mitigation efforts to hold temperature increase at 1.5˚C instead of 2˚C above the 

pre-industrial levels. 

<Figure 2, here, thanks> 

Most of these spatial patterns are consistent with the previous studies despite 

different climate experiments and/or methods (Alcamo et al 2007, Hagemann et al 

2013, Schleussner et al 2016, Lehner et al 2017). Specifically, our results are also in 

general agreement with an analysis using CMIP5 experiments and river-routing 

process performed by Koirala and colleagues (Koirala et al 2014) in terms of spatial 

extent of decreasing future low flows in Europe, Middle East, southwestern United 

States and Central America relative to the historical period. 

 

The high model consistency on the sign of change (3-5 models in totally 5 AGCMs) in 

most of the regions for the future periods (+1.5˚C, +2˚C experiments and their 

difference) gives us some confidence on these projections. Specifically, MIROC5 



projects a more intense drying pattern relative to CanAM4 in most of the fragmented 

regions (Figure S3 in Supplementary Information). All models indicated that the 

drought risk at low runoff conditions would intensify when global warming 

approaches the 2˚C (instead of 1.5˚C) above pre-industrial levels.  

 

Following the definition of regions in IPCC (2012), we sort our projections and 

estimate the global and regional mean of changes in mean percentile in the historical 

period (2106-2115) for monthly runoff corresponding to the Q20 of the future periods 

(Figure 3). Globally, the multi-model ensemble mean of low runoff is projected to 

increase slightly (Q20 -> Q20.14) under +1.5˚C experiment whilst barely change (Q20 -> 

Q20.07) under +2˚C experiment relative to the historical experiment, indicating that 

differences between +1.5˚C and +2˚C experiments are not statistically robust or 

nonlinear effect plays an important role. Regionally, the multi-model ensemble 

means of low runoff would decrease except for West Africa (Q20 -> Q20.31), Sahara 

(Q20 -> Q22.06), Northern Europe (Q20 -> Q20.24), North Australia (Q20 -> Q20.60), North 

Asia (Q20 -> Q20.46), South Australia/New Zealand (Q20 -> Q20.09), East Canada, 

Greenland, Iceland (Q20 -> Q22.03) and Alaska/Northwest Canada (Q20 -> Q21.08) under 

the +1.5˚C experiment. The direction of changes in multi-model mean of low runoff is 

quite similar under the +2˚C experiment except for South Australia/New Zealand (Q20 

-> Q19.48) and West Africa (Q20 -> Q19.97). Relative to the 2˚C warming target, a 1.5˚C 

warming target is more likely to reduce drought risk triggered by low runoff 

conditions at both global and regional scales (except for the Southeast Asia, North 

Asia, Southern Europe and Mediterranean, East Canada, Greenland, Iceland and 

Alaska/Northwest Canada). 



<Figure 3, here, thanks> 

In some regions, the projections are subject to a large spread across the ensemble, 

e.g., East Asia, Central Asia, Central North America and Sahara. The spread owing to 

differences between AGCMs is evident in South Australia/New Zealand, the Northern 

Europe, Southern Africa and the West Africa, where AGCMs project low runoff 

changes are of opposite sign. However, the changes in multi-model ensemble mean 

of low runoff in Southern Africa (slightly decrease) under different warming periods 

(+1.5˚C and +2˚C experiments) also coincide with hydrological drought projected by 

Prudhomme et al (2014) using ISI-MIP experiments. 

 

 4. Projections of water shortage at low runoff conditions 

To understand the societal impact of low runoff conditions, we reconcile the 

projections (Q20) with population distribution information (see Section 2.2) in order 

to estimate the people affected by water shortage in the historical and future periods 

(Figure 4). At the water demand threshold level of 1700 m3 capita-1 year-1 

(Falkenmark et al 1989, 2013), we find that about 65% (~4.2 billion) of the global 

population (~6.5 billion) experience water shortage. This is close to the estimates of 

Mekonnen and Hoekstra (2016), which concluded that totally 4.3 billion people (4.0 

billion people is facing severe water scarcity) lives under conditions of moderate to 

severe water scarcity at least one month per year (environmental flow requirements 

considered). Most of them live in the East Asia (~1.0 billion) and the South Asia (~1.1 

billion); others live in the Southeast Asia (~0.2 billion), Southern Europe and 

Mediterranean (~0.2 billion), Central Europe (~0.2 billion), Western Africa (~0.2 

billion), East Africa (~0.2 billion) and Central Asia (~0.2 billion) (Table 1).  



<Figure 4, here, thanks> 

Relative to the historical period, the people adversely affected by water shortage in 

+1.5˚C and +2˚C experiments would increase by ~0.5% (~35 millions) and ~0.7% (~48 

millions) of global population, respectively. These are consistent with the expectation 

of elevating water stress/scarcity in a warmer climate (Liu et al 2017, Veldkamp et al 

2016). The benefit of holding global warming at 1.5˚C instead of 2˚C above the 

pre-industrial levels is apparent in most of the regions (e.g., East Asia, South Asia, 

Central Europe, Western Africa and East Africa). 

<Table 1, here, thanks> 

From regional aggregation (Table 1), we find that more people in East Asia, South 

Asia, Southern Europe and Mediterranean, Central Europe and Southeast Asia would 

expose to the risk of water shortage under the future periods. Conversely, such risk 

would reduce in several regions, e.g., West Africa, West Coast South America, 

Alaska/Northwest Canada. Our projections suggest that stabilising temperature 

increase at 1.5˚C instead of 2˚C would constrain adverse impact on people suffering 

water shortages in most of the regions (particularly East Asia, South Asia, East Africa, 

Central Europe) but less effective in Southeast Asia, Alaska/Northwest Canada, few 

Latin America regions (Amazon, West Coast South America). Globally, we estimate 

this reduced risk (when limiting the warming to 1.5˚C rather than 2˚C) to be ~13 

million people. 

 

Repeating this analysis using the water demand threshold 1000 m3 capita-1 year-1, we 

confirm that the spatial distribution (Figure S4 in Supplementary Information) of 

water shortage appears similar to that using 1700 m3 capita-1 year-1. Whilst people 



affected by water shortage would reduce in the baseline as we would expect (i.e., 

about 3.6 billion people or 56% of global population)(Table S2 in Supplementary 

Information), its impact is more significant for the +1.5˚C (~44 million people above 

the baseline) and +2˚C experiments (~60 million people above the baseline) 

compared to the former case. Interestingly, at this relatively severe threshold, 

holding global warming at 1.5˚C instead of 2˚C would reduce the exposure to water 

shortage by ~16 million people (higher than but still close to that of the former case). 

In a sense, both thresholds confirm that there is a clear advantage of holding global 

warming at 1.5˚C relative to 2˚C. 

 

5. Discussions 

This study is performed using five AGCMs of HAPPI archive fulfilling our selection 

criteria (Section 2.1). Its experimental design enables generation of large ensembles 

(Mitchell et al 2016), making it particularly suitable for identification of changing 

pattern of extreme hydrological events such as droughts driven by low runoff 

conditions (e.g., Q20, Q10, Q5). These new findings generated from HAPPI experiments 

supplement the drought/low flow studies prepared using earlier climate modeling 

archives (CMIP5, ISI-MIP) (e.g., Koirala et al 2014, Prudhomme et al 2014, Schewe et 

al 2014, Schleussner et al 2016). The coverage of future period here (+1.5˚C, +2˚C 

experiments) matches the global temperature targets of Paris Agreement (UNFCCC 

2015), making it possible for international policymakers to comprehend societal 

impact of water shortages triggered by renewable freshwater availability below 

normal (e.g., low runoff) conditions on global and regional scales.  

 



The estimates presented here are based on raw AGCMs runoffs, avoiding 

uncertainties due to structural weakness of low flow simulation within many existing 

hydrological models (see comprehensive review on pg. 375-376, Van Loon 2015). 

Furthermore, the need of removing warm-up period from the relatively short 

duration of HAPPI experiments (2006-2015, 2106-2115) makes it less preferable to 

apply hydrological modelling tools. The matching of percentile of AGCMs runoffs (i.e., 

historical period Q20; percentile in the historical period for monthly runoff 

corresponding to the future period Q20) with that of the baseline (e.g., CDR runoff) 

(Section 2.2) adopted here is also a form of ‘distribution mapping’ approach, which 

enables streamlining all AGCMs projections with little concern about the numerical 

bias of AGCMs output. Whilst this approach applies similar correction algorithm to 

both historical and future periods like all bias-correction approaches, comprehensive 

evaluation has confirmed its merit over other existing approaches (Teutschbein and 

Seibert 2012, Liu et al 2015, Liu and Sun 2017). The calculation of renewable 

freshwater supply at low runoff conditions here (top right panel of Figure 1) 

prioritised societal water requirements over the environmental water requirements 

below normal conditions. The calculation is conservative because it excludes the 

existing renewable freshwater storages (e.g., freshwater lakes, dams, reservoirs) 

which regulate the freshwater supply (mostly replenished during normal and above 

normal conditions, e.g., wet season). In a broad sense, the quantitative results here 

should be informative for policymakers and water managers to examine whether the 

current capacity and operation rules of these renewable freshwater storages would 

sustainably regulate the freshwater supplies to support both human and natural 

systems in the future period (1.5˚C, +2˚C experiments). 



 

Estimates of water demand here made use of thresholds (e.g., 1700 m3 capita-1 year-1, 

1000 m3 capita-1 year-1) of the Falkenmark water stress indicator. The shortcomings of 

this kind of water stress indicator lies in its inability to reflect local water scarcities, 

availability of infrastructure which modifies water supplies (e.g., dams, reservoirs, 

river diversion) or how representative it is for countries with differences in lifestyle 

and climate conditions (Rijsbermann 2006). Despite these limitations, it is commonly 

applied on large scale investigations (e.g., Schewe et al 2014, Veldkamp et al 2016), 

mainly because of its simplicity and broad account for water requirement covering 

household, agricultural, industrial, energy sector and the environment (Falkenmark 

1989, Rijsbermann 2006). This is probably because it serves as a good proxy to gauge 

adequacy of water supply to meet the demand of the society on macro scales. 

 

6. Summary 

We began this manuscript by raising several questions around renewable freshwater 

availability below normal (e.g., low runoff) conditions with respect to the new 

climate change targets, its implication on the society and benefits of global warming 

at 1.5˚C over 2˚C (see Section 1). The newly released HAPPI experiments enable us, 

for the first time, to present a global assessment of changes for range of low runoff 

conditions (i.e., Q20 , Q10 , Q5) and such impacts on people affected by water shortage 

under 1.5oC and 2oC warming scenarios. We found that the multi-model ensemble 

mean of low runoff would decrease in most global regions except for Northern 

Europe, North Australia, Northern Asia, Sahara, Eastern Canada, Greenland, Iceland 

and the Alaska/Northwest Canada under both 1.5˚C and 2˚C warming scenarios 



relative to the historical period. We confirmed the benefit of holding global warming 

at 1.5˚C instead of 2˚C above the pre-industrial levels, with less severe reduction in 

low runoff across most regions (except for Southeast Asia, Amazon, West Coast South 

America and the Alaska/Northwest Canada) and the globe. These results are 

insensitive to the selected thresholds of low runoff. At the low runoff conditions Q20, 

our estimation suggested that approximately 65% of the global population suffered 

from water shortage (at water demand threshold of 1700 m3 capita-1 year-1) in the 

baseline period (1984-2010), who mainly lived in East Asia and South Asia. The 

situations were projected to be more severe in 1.5˚C and 2˚C warming worlds. By 

stabilising warming to below 1.5˚C instead of 2˚C, the number of people affected by 

water shortage at low runoff conditions would be lesser in many regions, i.e., East 

Asia, South Asia and the Central Europe. We found our projections insensitive to 

alternative water demand threshold (e.g., 1000 m3 capita-1 year-1). These findings 

addressed the questions raised earlier and should provide science-based evaluation 

on the benefit of holding 1.5˚C warming (in water sector) and inform climate policy in 

the upcoming IPCC special report on “Global warming of 1.5˚C” in 2018. Future 

efforts involving population growth (e.g., Shared Socioeconomic Pathways), 

hydrologic simulation (when low flow simulation technique advances) and water 

infrastructure (e.g., dams, reservoirs, river diversion canals) at finer scales would help 

addressing the local climate adaptation and water management strategies. 
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Table and Figure captions: 

Table 1: Impact of low runoff conditions Q20 induced water shortage (water demand threshold: 

1000 m3 capita-1 yr-1) on population (constant 2005): the baseline (1984-2010), +1.5˚C minus 

historical experiments Δ(fut+1.5-his), +2˚C minus historical experiments Δ(fut+2.0-his) and +1.5˚C 

minus +2˚C experiments Δ(fut+1.5-fut+2.0). The estimates of affected population (absolute number 

and percentage of population) are presented on regional and the global scales. The +/- sign 

represents favorably/adversely affected population. 

Figure 1: A schematic overview of overall methodology and workflow of this study (details in 

Section 2). 

Figure 2: Multi-model ensemble mean percentile in the historical period for monthly runoff 

corresponding to the future period Q20 (i) and model consistency (ii) on a spatial resolution of 

0.5˚ x 0.5˚ for: (a) +1.5˚C experiment, (b) +2˚C experiment and (c), (a) minus (b). The percentile 

<Q20 (>Q20) indicates that magnitude of the future period Q20 would become drier (wetter). 

Robustness of projections increases with higher model consistency and vice-versa. Legend in (a)(i) 

applies to (b)(i); legend in (a)(ii) applies to (b)(ii) and (c)(ii). 

Figure 3: Multi-model percentile in the historical period for monthly runoff corresponding to the 

future period Q20 in different regions (a) for: (b) +1.5˚C experiment, (b) +2˚C experiment and (c), 

(a) minus (b). The color bar in (b)-(d) shows the multi-model maximum (blue), multi-model 

minimum (red) and multi-model ensemble mean (the dividing line between blue and red colors). 

The percentile <Q20 (>Q20) indicates that magnitude of the future period Q20 would become 

drier (wetter). Legend in (b) applies to (c) and (d). 

Figure 4: Spatial-distribution of people affected by low runoff conditions Q20 induced water 

shortage (water demand threshold: 1700 m3 capita-1 yr-1): (a) the baseline (1984-2010), (b) +1.5˚C 

experiment minus the historical period, (c) +2˚C experiment minus the historical period and (d), 

(b) minus (c). Estimated based on population data that is consistent with the World Bank 

(constant 2005). Legend in (a) applies to all panels.



Table 1: Impact of low runoff conditions Q20 induced water shortage (water demand threshold: 1000 m3 capita-1 yr-1) on population (constant 2005): the baseline 

(1984-2010), +1.5˚C minus historical experiments Δ(fut+1.5-his), +2˚C minus historical experiments Δ(fut+2.0-his) and +1.5˚C minus +2˚C experiments Δ(fut+1.5-fut+2.0). 
The estimates of affected population (absolute number and percentage of population) are presented on regional and the global scales. The +/- sign represents the 
mean value of favorably/adversely affected population using 5 AGCMs. The number appears after the ± sign is the standard deviation. 

 
 

Label* Population 
(constant 2005) 
[million] 

Affected population (water demand threshold: 1700 m3 capita-1 yr-1) 

Baseline 
[million]      % 

△(fut+1.5-his) 
[million]      % 

△(fut+2.0-his) 
[million]      % 

△(fut+1.5- fut+2.0) 
[million]      % 

ALA 
AMZ 
CAM 
CAS 
CEU 
CGI 
CNA 
EAF 
EAS 
ENA 
MED 
NAS 
NAU 
NEB 
NEU 
SAF 
SAH 
SAS 
SAU 
SSA 
SEA 
TIB 

0.6 
67.4 
180.9 
183.9 
366.6 
0.8 
103.0 
261.7 
1498.8 
148.4 
366.2 
82.4 
5.2 
75.9 
116.5 
137.4 
57.3 
1356.6 
20.0 
143.3 
510.6 
72.3 

-0.40 
-21.00 
-100.20 
-153.10 
-237.30 
-0.20 
-41.70 
-178.10 
-1010.50 
-58.00 
-235.20 
-50.40 
-1.60 
-40.50 
-59.40 
-89.20 
-53.80 
-1118.60 
-11.50 
-67.20 
-232.90 
-61.80 

-66.67 
-31.16 
-55.39 
-83.25 
-64.73 
-25.00 
-40.49 
-68.06 
-67.42 
-39.08 
-64.23 
-61.10  
-30.77 
-53.36 
-50.99 
-64.92 
-93.89 
-82.46 
-57.50 
-46.89 
-45.61 
-85.48 

+0.02 ± 0.01  
-0.45 ± 0.22  
-0.53 ± 0.41  
-1.02 ± 0.79  
-1.71 ± 2.67  

+0.00(2) ± 0.01  
-0.43 ± 0.28  
+0.01 ± 1.47  

-12.44 ± 3.11  
-0.64 ± 0.58  
-2.06 ± 1.57  
-0.12 ± 0.43  
-0.04 ± 0.04  
-0.53 ± 0.73  
-0.43 ± 0.65  
-0.38 ± 0.48  
+0.01 ± 0.08  
-5.46 ± 3.41  
-0.03 ± 0.11  
-0.72 ± 0.27  
-9.11 ± 3.02  
-0.20 ± 0.22  

+3.60 ± 1.66 
-0.66 ± 0.81 
-0.29 ± 0.23 
-0.56 ± 0.43 
-0.47 ± 0.73 
+0.20 ± 0.81 
-0.42 ± 0.27 

+0.00(3) ± 0.56 
+0.83 ± 0.21 
-0.43 ± 0.39 
-0.56 ± 0.43 
-0.15 ± 0.52 
-0.73 ± 0.73 
-0.70 ± 0.96 
-0.37 ± 0.56 
-0.27 ± 0.35 
+0.0 1± 0.13 
-0.40 ± 0.25 
-0.14 ± 0.54 
-0.50 ± 0.19 
-1.78 ± 0.59 
-0.27 ± 0.31 

+0.04 ± 0.01  
-0.35 ± 0.79  
-1.06 ± 0.89 
-1.25 ± 0.82 
-3.63 ± 2.72 

+0.00(0) ± 0.01 
-0.53 ± 0.24 
-1.00 ± 1.79 

-15.68 ± 5.49 
-1.04 ± 0.60 
-2.18 ± 2.16 
-0.36 ± 0.63 
-0.04 ± 0.04 
-0.77 ± 0.97 
-0.79 ± 0.52 
-0.56 ± 0.66 
-0.04 ± 0.07 
-7.98 ± 3.73 
-0.07 ± 0.11 
-1.14 ± 0.25 
-8.68 ± 3.39 
-0.27 ± 0.24 

+6.55 ± 2.16 
-0.52 ± 1.17 
-0.59 ± 0.49 
-0.68 ± 0.45 
-0.99 ± 0.74 
-0.05 ± 0.89 
-0.52 ± 0.24 
-0.38 ± 0.68 
-1.05 ± 0.37 
-0.70 ± 0.40 
-0.59 ± 0.59 
-0.44 ± 0.77 
-0.82 ± 0.70 
-1.01 ± 1.27 
-0.67 ± 0.45 
-0.41 ± 0.48 
-0.06 ± 0.13 
-0.59 ± 0.28 
-0.36 ± 0.56 
-0.79 ± 0.18 
-1.70 ± 0.66 
-0.38 ± 0.33 

-0.02 ± 0.01  
-0.10 ± 0.48 
+0.53 ± 0.58  
+0.23 ± 0.09  
+1.92 ± 0.65  

+0.00(2) ± 0.00  
+0.10 ± 0.25  
+1.00 ± 0.50  
+3.23 ± 3.01  
+0.40 ± 0.28  
+0.11 ± 0.92  
+0.24 ± 0.25  

+0.00(5) ± 0.01  
+0.24 ± 0.37  
+0.36 ± 0.33  
+0.18 ± 0.42  
+0.04 ± 0.02  
+2.52 ± 2.54  
+0.04 ± 0.05  
+0.41 ± 0.10  
-0.43 ± 1.92  
+0.08 ± 0.09  

-2.95 ± 1.18 
-0.14 ± 0.71 
+0.29 ± 0.32 
+0.13 ± 0.05 
+0.52 ± 0.18 
+0.25 ± 0.45 
+0.10 ± 0.25 
+0.38 ± 0.19 
+0.22 ± 0.20 
+0.27 ± 0.19 
+0.03 ± 0.25 
+0.29 ± 0.30 
+0.09 ± 0.27 
+0.31 ± 0.49 
+0.31 ± 0.28 
+0.13 ± 0.31 
+0.07 ± 0.04 
+0.19 ± 0.19 
+0.22 ± 0.25 
+0.29 ± 0.07 
-0.08 ± 0.38 
+0.11 ± 0.12 



WAF 
WAS 
WNA 
WSA 
GLOBE 

338.8 
182.5 
79.1 
51.5 
6451.00 

-157.60 
-139.80 
-58.90 
-27.70 
-4220.30 

-46.52 
-76.60 
-74.46 
-53.79 
-65.42 

+2.16 ± 1.35  
-0.71 ± 0.43  
-0.18 ± 0.26  
+0.02 ± 0.12  

-35.04 ± 11.98 

+0.64 ± 0.40 
-0.39 ± 0.24 
-0.23 ± 0.32 
+0.03 ± 0.23 
-0.54 ± 0.19 

+0.92 ± 1.22 
-0.94 ± 0.41 
-0.23 ± 0.36 
+0.04 ± 0.14 

-47.89 ± 14.75 

+0.27 ± 0.36 
-0.52 ± 0.23 
-0.29 ± 0.45 
+0.08 ± 0.26 
-0.74 ± 0.23 

+1.24 ± 1.12  
+0.24 ± 0.25  
+0.04 ± 0.14  
-0.02 ± 0.06  

+12.84 ± 5.25 

+0.37 ± 0.33  
+0.13 ± 0.14  
+0.05 ± 0.17  
-0.04 ± 0.12  
+0.20 ± 0.08 

*ALA: Alaska/Northwest Canada, AMZ: Amazon, CAM: Central America and Mexico, CAS: Central Asia, CEU: Central Europe, CGI: East Canada, Greenland, Iceland, 
CNA: Central North America, EAF: East Africa, EAS: East Asia, ENA: East North America, MED: Southern Europe and Mediterranean, NAS: North Asia, NAU: North 
Australia, NEB: Northeastern Brazil, NEU: Northern Europe, SAF: Southern Africa, SAH: Sahara, SAS: South Asia, SAU: South Australia/New Zealand, SSA: 
Southeastern South America, SEA: Southeast Asia, TIB: Tibetan Plateau, WAF: West Africa, WAS: West Asia, WNA: West North America, WSA: West Coast South 
America, GLOBE: Globe (excluding Antarctica).  

 
  



 
Figure 1: A schematic overview of methodology and workflow of this study (details in Section 2). 

 

  



Figure 2: Multi-model ensemble mean percentile in the historical period for monthly runoff corresponding to the future period Q20 (i) and model consistency (ii) 

on a spatial resolution of 0.5˚ x 0.5˚ for: (a) +1.5˚C experiment, (b) +2˚C experiment and (c), (a) minus (b). The percentile <Q20 (>Q20) indicates that magnitude of 
the future period Q20 would become drier (wetter). Robustness of projections increases with higher model consistency and vice-versa. Legend in (a)(i) applies to 
(b)(i); legend in (a)(ii) applies to (b)(ii) and (c)(ii). 

 



Figure 3: Multi-model mean percentile in the historical period for monthly runoff corresponding 

to the future period Q20 in different regions (a) for: (b) +1.5˚C experiment, (c) +2˚C experiment 
and (d), (a) minus (b). The color bar in (b)-(d) shows the multi-model maximum (blue), 
multi-model minimum (red) and multi-model ensemble mean (the dividing line between blue 
and red colors). The percentile <Q20 (>Q20) indicates that magnitude of the future period Q20 
would become drier (wetter). Legend in (b) applies to (c) and (d). 
 

 



Figure 4: Spatial-distribution of people affected by low runoff conditions Q20 induced water shortage (water demand threshold: 1700 m3 capita-1 yr-1): (a) the 

baseline (1984-2010), (b) +1.5˚C experiment minus the historical period, (c) +2˚C experiment minus the historical period and (d), (b) minus (c). Estimated based on 
population data that is consistent with the World Bank (constant 2005). Legend in (a) applies to all panels. 

 
 


