41 research outputs found
Bio-sensing textile based patch with integrated optical detection system for sweat monitoring
Sensors, which can be integrated into clothing and used to measure biochemical changes in body fluids,
such as sweat, constitute a major advancement in the area of wearable sensors. Initial applications for
such technology exist in personal health and sports performance monitoring. However, sample collection
is a complicated matter as analysis must be done in real-time in order to obtain a useful examination
of its composition. This work outlines the development of a textile-based fluid handling platform which
uses a passive pump to gather sweat and move it through a pre-defined channel for analysis. The system
is tested both in vitro and in vivo. In addition, a pH sensor, which depends on the use of a pH sensitive dye
and paired emitter-detector LEDs to measure colour changes, has been developed. In vitro and on-body
trials have shown that the sensor has the potential to record real-time variations in sweat during exercise
Increasing genome instability in adrenocortical carcinoma progression with involvement of chromosomes 3, 9 and X at the adenoma stage
The investigation of chromosomal aberrations in adrenocortical tumours has been limited by the difficulties of applying classical cytogenetics to tumours with low levels of proliferation. We have therefore applied the technique of interphase cytogenetics to paraffin-embedded archival specimens of 14 adrenocortical adenomas and 13 carcinomas. Hybridizations were performed using centromere-specific probes to chromosomes 3, 4, 9, 17, 18 and X, which have been shown to be altered in other types of tumours. Chromosomal imbalance was defined on the basis of changes in both chromosome index (CI) and signal distribution (SD). Where only one of these was altered, this was classified as a tendency to gain or loss. On the basis of the analysis of optimal hybridizations, carcinomas showed gains in all chromosomes studied, five of nine showing gains in multiple chromosomes. Gains were most common in chromosomes 3, 9 and, in particular X, eight of 11 showing gain, and one a tendency to gain. Chromosomal gain was seen less commonly in adenomas, but again chromosomes 3, 9 and X were involved. Losses were infrequent, only one carcinoma showing loss of chromosome 18, and adenomas showing a tendency to loss of chromosomes 4 (two cases), 17 (one case) and 18 (two cases). Our data suggest that changes in chromosomes 3, 9 and X are early events in adrenocortical tumorigenesis, and that there is increasing chromosomal instability with tumour progression. © 1999 Cancer Research Campaig
Genotype and tumor locus determine expression profile of pseudohypoxic pheochromocytomas and paragangliomas
Contains fulltext :
118484.pdf (publisher's version ) (Open Access)Pheochromocytomas (PHEOs) and paragangliomas (PGLs) related to mutations in the mitochondrial succinate dehydrogenase (SDH) subunits A, B, C, and D, SDH complex assembly factor 2, and the von Hippel-Lindau (VHL) genes share a pseudohypoxic expression profile. However, genotype-specific differences in expression have been emerging. Development of effective new therapies for distinctive manifestations, e.g., a high rate of malignancy in SDHB- or predisposition to multifocal PGLs in SDHD patients, mandates improved stratification. To identify mutation/location-related characteristics among pseudohypoxic PHEOs/PGLs, we used comprehensive microarray profiling (SDHB: n = 18, SDHD-abdominal/thoracic (AT): n = 6, SDHD-head/neck (HN): n = 8, VHL: n = 13). To avoid location-specific bias, typical adrenal medulla genes were derived from matched normal medullas and cortices (n = 8) for data normalization. Unsupervised analysis identified two dominant clusters, separating SDHB and SDHD-AT PHEOs/PGLs (cluster A) from VHL PHEOs and SDHD-HN PGLs (cluster B). Supervised analysis yielded 6937 highly predictive genes (misclassification error rate of 0.175). Enrichment analysis revealed that energy metabolism and inflammation/fibrosis-related genes were most pronouncedly changed in clusters A and B, respectively. A minimum subset of 40 classifiers was validated by quantitative real-time polymerase chain reaction (quantitative real-time polymerase chain reaction vs. microarray: r = 0.87). Expression of several individual classifiers was identified as characteristic for VHL and SDHD-HN PHEOs and PGLs. In the present study, we show for the first time that SDHD-HN PGLs share more features with VHL PHEOs than with SDHD-AT PGLs. The presented data suggest novel subclassification of pseudohypoxic PHEOs/PGLs and implies cluster-specific pathogenic mechanisms and treatment strategies