121 research outputs found

    Post-operative small pelvic field radiation therapy in patients with intermediate risk early stage cervix cancer: a safe and efficient treatment modality

    Get PDF
    BACKGROUND: The treatment of early stage cervical cancer has different therapeutic options. Adjuvant external beam radiotherapy for surgically treated intermediate risk cervical cancer patients has shown acceptable oncological outcomes with a low incidence of toxicity. The aim of this study was to analyze the oncological outcomes and safety of adjuvant small pelvic field radiotherapy in surgically treated stage IB1-2 cervical cancer patients who met the Sedlis intermediate-risk criteria. MATERIALS AND METHODS: A retrospective cohort study was carried out with 28 patients treated from 2007 to November 2019 with biopsy proven intermediate risk stage IB1–2 cervical cancer previously treated with radical hysterectomy and bilateral lymphadenectomy who received adjuvant small pelvic field radiotherapy. The primary endpoints were local and distant control and overall survival. Secondary endpoints were acute and late gastrointestinal and genitourinary toxicity. Survival curves were analyzed using the Kaplan-Meier method. RESULTS: After a median follow up period of 41.5 (27.5–80.5) months, adjuvant small pelvic field radiotherapy showed a 100% overall survival rate, 81.82% disease free survival and 86.36% local recurrence-free survival with no incidence of grade 3 or 4 acute or late toxicity. Three patients suffered from relapse, 1 in the vaginal cuff, 1 in the retrovesical area and 1 patient in the retroperitoneal area. CONCLUSIONS: Adjuvant small pelvic field radiotherapy is an efficient and safe treatment option that offers excellent oncological outcomes to surgically treated intermediate-risk stage IB1–2 cervical cancer patients with an excellent toxicity profile.

    Transport in topological insulator nanowires

    Full text link
    In this chapter we review our work on the theory of quantum transport in topological insulator nanowires. We discuss both normal state properties and superconducting proximity effects, including the effects of magnetic fields and disorder. Throughout we assume that the bulk is insulating and inert, and work with a surface-only theory. The essential transport properties are understood in terms of three special modes: in the normal state, half a flux quantum along the length of the wire induces a perfectly transmitted mode protected by an effective time reversal symmetry; a transverse magnetic field induces chiral modes at the sides of the wire, with different chiralities residing on different sides protecting them from backscattering; and, finally, Majorana zero modes are obtained at the ends of a wire in a proximity to a superconductor, when combined with a flux along the wire. Some parts of our discussion have a small overlap with the discussion in the review [Bardarson and Moore, Rep. Prog. Phys., 76, 056501, (2013)]. We do not aim to give a complete review of the published literature, instead the focus is mainly on our own and directly related work.Comment: 22 pages, 8 figures; Chapter in "Topological Matter. Springer Series in Solid-State Sciences, vol 190. Springer

    Excess Circulating Alternatively Activated Myeloid (M2) Cells Accelerate ALS Progression While Inhibiting Experimental Autoimmune Encephalomyelitis

    Get PDF
    Circulating immune cells including autoreactive T cells and monocytes have been documented as key players in maintaining, protecting and repairing the central nervous system (CNS) in health and disease. Here, we hypothesized that neurodegenerative diseases might be associated, similarly to tumors, with increased levels of circulating peripheral myeloid derived suppressor cells (MDSCs), representing a subset of suppressor cells that often expand under pathological conditions and inhibit possible recruitment of helper T cells needed for fighting off the disease.We tested this working hypothesis in amyotrophic lateral sclerosis (ALS) and its mouse model, which are characterized by a rapid progression once clinical symptoms are evident. Adaptive transfer of alternatively activated myeloid (M2) cells, which homed to the spleen and exhibited immune suppressive activity in G93A mutant superoxide dismutase-1 (mSOD1) mice at a stage before emergence of disease symptoms, resulted in earlier appearance of disease symptoms and shorter life expectancy. The same protocol mitigated the inflammation-induced disease model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), which requires circulating T cells for disease induction. Analysis of whole peripheral blood samples obtained from 28 patients suffering from sporadic ALS (sALS), revealed a two-fold increase in the percentage of circulating MDSCs (LIN(-/Low)HLA-DR(-)CD33(+)) compared to controls.Taken together, these results emphasize the distinct requirements for fighting the inflammatory neurodegenerative disease, multiple sclerosis, and the neurodegenerative disease, ALS, though both share a local inflammatory component. Moreover, the increased levels of circulating MDSCs in ALS patients indicates the operation of systemic mechanisms that might lead to an impairment of T cell reactivity needed to overcome the disease conditions within the CNS. This high level of suppressive immune cells might represent a risk factor and a novel target for therapeutic intervention in ALS at least at the early stage

    A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation

    Get PDF
    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies

    Natriuretic peptides and integrated risk assessment for cardiovascular disease: an individual-participant-data meta-analysis

    Get PDF
    BACKGROUND: Guidelines for primary prevention of cardiovascular diseases focus on prediction of coronary heart disease and stroke. We assessed whether or not measurement of N-terminal-pro-B-type natriuretic peptide (NT-proBNP) concentration could enable a more integrated approach than at present by predicting heart failure and enhancing coronary heart disease and stroke risk assessment. METHODS: In this individual-participant-data meta-analysis, we generated and harmonised individual-participant data from relevant prospective studies via both de-novo NT-proBNP concentration measurement of stored samples and collection of data from studies identified through a systematic search of the literature (PubMed, Scientific Citation Index Expanded, and Embase) for articles published up to Sept 4, 2014, using search terms related to natriuretic peptide family members and the primary outcomes, with no language restrictions. We calculated risk ratios and measures of risk discrimination and reclassification across predicted 10 year risk categories (ie, <5%, 5% to <7·5%, and ≥7·5%), adding assessment of NT-proBNP concentration to that of conventional risk factors (ie, age, sex, smoking status, systolic blood pressure, history of diabetes, and total and HDL cholesterol concentrations). Primary outcomes were the combination of coronary heart disease and stroke, and the combination of coronary heart disease, stroke, and heart failure. FINDINGS: We recorded 5500 coronary heart disease, 4002 stroke, and 2212 heart failure outcomes among 95 617 participants without a history of cardiovascular disease in 40 prospective studies. Risk ratios (for a comparison of the top third vs bottom third of NT-proBNP concentrations, adjusted for conventional risk factors) were 1·76 (95% CI 1·56-1·98) for the combination of coronary heart disease and stroke and 2·00 (1·77-2·26) for the combination of coronary heart disease, stroke, and heart failure. Addition of information about NT-proBNP concentration to a model containing conventional risk factors was associated with a C-index increase of 0·012 (0·010-0·014) and a net reclassification improvement of 0·027 (0·019-0·036) for the combination of coronary heart disease and stroke and a C-index increase of 0·019 (0·016-0·022) and a net reclassification improvement of 0·028 (0·019-0·038) for the combination of coronary heart disease, stroke, and heart failure. INTERPRETATION: In people without baseline cardiovascular disease, NT-proBNP concentration assessment strongly predicted first-onset heart failure and augmented coronary heart disease and stroke prediction, suggesting that NT-proBNP concentration assessment could be used to integrate heart failure into cardiovascular disease primary prevention. FUNDING: British Heart Foundation, Austrian Science Fund, UK Medical Research Council, National Institute for Health Research, European Research Council, and European Commission Framework Programme 7

    A multilaboratory comparison of calibration accuracy and the performance of external references in analytical ultracentrifugation.

    Get PDF
    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies
    • …
    corecore