511 research outputs found

    Nonpolar optical scattering of positronium in magnesium fluoride

    Get PDF
    We report the results of the analysis of the temperature broadening of the momentum distribution of delocalized Positronium (Ps) in Magnesium Fluoride in terms of optical deformation-potential scattering model (long-wavelength optical phonons). The Ps optical deformation-potential coupling constant DoD_{o} in MgF2_{2} has been determined to be (1.8±0.3)×109(1.8\pm0.3)\times10^{9} eV/cm. We also show that the Ps momentum distribution is sensitive to second-order phase transitions in those crystals where optical deformation-potential scattering is allowed in one and forbidden in another crystalline phase

    Frictional strengthening explored during non-steady state shearing. Implications for fault stability and slip event recurrence time

    Get PDF
    On natural faults that host repeating slip events, the inter-event loading time is quite large compared to the slip event duration. Since most friction studies focus on steady-state frictional behavior, the fault loading phase is not typically examined. Here, we employ a method specifically designed to evaluate fault strength evolution during active loading, under shear driving rates as low as 10−10 m/s, on natural fault gouge samples from the Waikukupa Thrust in southern New Zealand. These tests reveal that in the early stages of loading following a slip event, there is a period of increased stability, which fades with accumulated slip. In the framework of rate- and state-dependent friction laws, this temporary stable phase exists as long as slip is less than the critical slip distance and the elapsed time is less than the value of the state variable at steady state. These observations indicate a minimum earthquake recurrence time, which depends on the field value of the critical slip distance and the background slip rate. We compare estimates of minimum earthquake recurrence times with the recurrence times of repeating large earthquakes on the Alpine Fault in southern New Zealand and repeating small-magnitude earthquakes on the San Andreas Fault system in California. We find that the observed recurrence times are mostly longer than the predicted minimum values, and exceptions in the San Andreas system may be explained by elevated slip rates due to larger earthquakes in this region

    Mixed brittle and viscous strain localisation in pelagic sediments seaward of the Hikurangi margin, New Zealand

    Get PDF
    Calcareous‐pelagic input sediments are present at several subduction zones and deform differently to their siliciclastic counterparts. We investigate deformation in calcareous‐pelagic sediments drilled ~20 km seaward of the Hikurangi megathrust toe at Site U1520 during IODP Expeditions 372 and 375. Clusters of normal faults and subhorizontal stylolites in the sediments indicate both brittle faulting and viscous pressure solution operated at 150°C where frictional (possibly seismic) slip likely predominates. Plain Language Summary The type of sediments entering subduction zones will influence the way the plates in the subduction zone slide past one another. We looked at limestones in sediments drilled before they reach the subduction zone and found that because of the pressure they are under, they begin to crack and dissolve at very shallow depths. Most of the dissolution happens on thin layers where it concentrates clay by removing other, more soluble minerals. We compare how much vertical shortening we see in the sediments to a computer model. The model overestimates vertical shortening over the history of the sediment unless either high pressure fluids reduce the pressure felt by the sediments, or dissolution is governed by the largest sediment grains rather than their average size. Dissolving and cracking make the sediments weaker by concentrating soft materials such as clay. When these sediments enter the subduction zone, the two plates might slip past one another more easily on these weak regions, possibly during slow slip events

    Constraining clay hydration state and its role in active fault systems

    Get PDF
    To understand the role of hydrated clay minerals in active fault systems, a humidity chamber connected to an X‐ray diffractometer was used to determine the adsorption of water onto and/or into the crystal structure of smectite. This new type of analysis was carried out under specific temperature and humidity conditions, using powdered clay size fractions (< 2 µm) of rock samples from the San Andreas Fault (USA) and the Nankai Trough (Japan). Pressure cannot be controlled, but does not significantly affect clay swelling at shallow conditions. Air‐dried samples show a discrete smectite phase that swells after traditional ethylene glycolation to an interlayer distance of 1.5 and 1.7 nm. Using the humidity chamber, however, the samples show a shorter interlayer distance, between 1.09 and 1.54 nm. Based on our analysis, we show that (i) ethylene glycol overestimates the size of the interlayer space, and therefore water content, so is a crude maximum only; (ii) interlayer swelling occurs in smectite clay minerals at all temperatures between 25 and 95°C; and (iii) particle orientation increases with increasing humidity, indicating a higher mobility of smectite from interlayer hydration. Detailed characterization of the hydration state of smectite under original conditions is critical for understanding of clay‐fluid interaction, the mechanical behavior during fault displacements, and fluid budgets at depth. We propose that humidity chamber experiments should be the new standard procedure to constrain swelling characteristics of natural and synthetic clay minerals. Key Points Investigating smectite swelling behavior Humidity chamber connected to an X‐ray diffractometer Implications for weak fault behaviorPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98123/1/ggge20077.pd

    Study of the plutino object (208996) 2003 AZ84 from stellar occultations: size, shape and topographic features

    Full text link
    We present results derived from four stellar occultations by the plutino object (208996) 2003~AZ84_{84}, detected at January 8, 2011 (single-chord event), February 3, 2012 (multi-chord), December 2, 2013 (single-chord) and November 15, 2014 (multi-chord). Our observations rule out an oblate spheroid solution for 2003~AZ84_{84}'s shape. Instead, assuming hydrostatic equilibrium, we find that a Jacobi triaxial solution with semi axes (470±20)×(383±10)×(245±8)(470 \pm 20) \times (383 \pm 10) \times (245 \pm 8)~km % axis ratios b/a=0.82±0.05b/a= 0.82 \pm 0.05 and c/a=0.52±0.02c/a= 0.52 \pm 0.02, can better account for all our occultation observations. Combining these dimensions with the rotation period of the body (6.75~h) and the amplitude of its rotation light curve, we derive a density ρ=0.87±0.01\rho=0.87 \pm 0.01~g~cm3^{-3} a geometric albedo pV=0.097±0.009p_V= 0.097 \pm 0.009. A grazing chord observed during the 2014 occultation reveals a topographic feature along 2003~AZ84_{84}'s limb, that can be interpreted as an abrupt chasm of width 23\sim 23~km and depth >8> 8~km or a smooth depression of width 80\sim 80~km and depth 13\sim 13~km (or an intermediate feature between those two extremes)

    Suicidal ideation and burnout among psychiatric trainees in Japan

    Get PDF
    AIM: Burnout is a psychological condition that may occur in all workers after being exposed to excessive work-related stresses. We investigated suicidal ideation and burnout among Japanese psychiatric trainees as a part of the Burnout Syndrome Study (BoSS) International.  METHODS: In the Japanese branch, 91 trainees fully completed suicide ideation and behaviour questionnaire (SIBQ) and Maslach Burnout Inventory-General Survey (MBI-GS).  RESULTS: Passive suicidal ideation was reported by 38.5% of Japanese trainees and 22.0% of them had experienced active suicidal ideation. The burnout rate among Japanese subjects was 40.0%. These results were worse compared to the all 1980 trainees who fully completed the main outcome measure in BoSS International, 25.9%, 20.4% and 36.7%, respectively.  CONCLUSIONS: Our results suggest a higher risk of suicide among Japanese residents. Japan has a higher suicide rate than other countries. Early detection of, and appropriate intervention for, suicidal ideation is important in preventing suicide in psychiatry residents

    Left atrial diastasis strain slope is a marker of hemodynamic recovery in post-ST elevation myocardial infarction: the Laser Atherectomy for STemi, Pci Analysis with Scintigraphy Study (LAST-PASS)

    Get PDF
    BackgroundLeft atrial (LA) mechanics are strongly linked with left ventricular (LV) filling. The LA diastasis strain slope (LADSS), which spans between the passive and active LA emptying phases, may be a key indicator of the LA–LV interplay during diastole.AimThis study aimed to investigate the LA–LV interdependencies in post-ST elevation myocardial infarction (STEMI), with particular focus on the LADSS.Materials and methodsPatients with post-anterior STEMI who received primary percutaneous coronary intervention underwent contrast cardiac magnetic resonance imaging (MRI) during acute (5–9 days post-STEMI) and chronic (at 6 months) phases. The LADSS was categorized into three groups: Groups 1, 2, and 3 representing positive, flat, and negative slopes, respectively. Cross-sectional correlates of LADSS Group 2 or 3 compared to Group 1 were identified, adjusting for demographics, LA indices, and with or without LV indices. The associations of acute phase LADSS with the recovery of LV ejection fraction (LVEF) and scar amount were investigated.ResultsSixty-six acute phase (86.4% male, 63.1 ± 11.8 years) and 59 chronic phase cardiac MRI images were investigated. The distribution across LADSS Groups 1, 2, and 3 in the acute phase was 24.2%, 28.9%, and 47.0%, respectively, whereas in the chronic phase, it was 33.9%, 22.0%, and 44.1%, respectively. LADSS Group 3 demonstrated a higher heart rate than Group 1 in the acute phase (61.9 ± 8.7 vs. 73.5 ± 11.9 bpm, p &lt; 0.01); lower LVEF (48.7 ± 8.6 vs. 41.8 ± 9.9%, p = 0.041) and weaker LA passive strain rate (SR) (−1.1 ± 0.4 vs. −0.7 [−1.2 to −0.6] s−1, p = 0.037) in the chronic phase. Chronic phase Group 3 exhibited weaker LA passive SR [relative risk ratio (RRR) = 8.8, p = 0.012] than Group 1 after adjusting for demographics and LA indices; lower LVEF (RRR = 0.85, p &lt; 0.01), higher heart rate (RRR = 1.1, p = 0.070), and less likelihood of being male (RRR = 0.08, p = 0.058) after full adjustment. Acute phase LADSS Groups 2 and 3 predicted poor recovery of LVEF when adjusted for demographics and LA indices; LADSS Group 2 remained a predictor in the fully adjusted model (β = −5.8, p = 0.013).ConclusionThe LADSS serves both as a marker of current LV hemodynamics and its recovery in post-anterior STEMI. The LADSS is an important index of LA–LV interdependency during diastole.Clinical Trial Registrationhttps://clinicaltrials.gov/, identifier NCT03950310

    Brain structural covariance networks in obsessive-compulsive disorder: a graph analysis from the ENIGMA Consortium.

    Get PDF
    Brain structural covariance networks reflect covariation in morphology of different brain areas and are thought to reflect common trajectories in brain development and maturation. Large-scale investigation of structural covariance networks in obsessive-compulsive disorder (OCD) may provide clues to the pathophysiology of this neurodevelopmental disorder. Using T1-weighted MRI scans acquired from 1616 individuals with OCD and 1463 healthy controls across 37 datasets participating in the ENIGMA-OCD Working Group, we calculated intra-individual brain structural covariance networks (using the bilaterally-averaged values of 33 cortical surface areas, 33 cortical thickness values, and six subcortical volumes), in which edge weights were proportional to the similarity between two brain morphological features in terms of deviation from healthy controls (i.e. z-score transformed). Global networks were characterized using measures of network segregation (clustering and modularity), network integration (global efficiency), and their balance (small-worldness), and their community membership was assessed. Hub profiling of regional networks was undertaken using measures of betweenness, closeness, and eigenvector centrality. Individually calculated network measures were integrated across the 37 datasets using a meta-analytical approach. These network measures were summated across the network density range of K = 0.10-0.25 per participant, and were integrated across the 37 datasets using a meta-analytical approach. Compared with healthy controls, at a global level, the structural covariance networks of OCD showed lower clustering (P &lt; 0.0001), lower modularity (P &lt; 0.0001), and lower small-worldness (P = 0.017). Detection of community membership emphasized lower network segregation in OCD compared to healthy controls. At the regional level, there were lower (rank-transformed) centrality values in OCD for volume of caudate nucleus and thalamus, and surface area of paracentral cortex, indicative of altered distribution of brain hubs. Centrality of cingulate and orbito-frontal as well as other brain areas was associated with OCD illness duration, suggesting greater involvement of these brain areas with illness chronicity. In summary, the findings of this study, the largest brain structural covariance study of OCD to date, point to a less segregated organization of structural covariance networks in OCD, and reorganization of brain hubs. The segregation findings suggest a possible signature of altered brain morphometry in OCD, while the hub findings point to OCD-related alterations in trajectories of brain development and maturation, particularly in cingulate and orbitofrontal regions

    Genome-Wide Association Study and Gene Expression Analysis Identifies CD84 as a Predictor of Response to Etanercept Therapy in Rheumatoid Arthritis

    Get PDF
    Anti-tumor necrosis factor alpha (anti-TNF) biologic therapy is a widely used treatment for rheumatoid arthritis (RA). It is unknown why some RA patients fail to respond adequately to anti-TNF therapy, which limits the development of clinical biomarkers to predict response or new drugs to target refractory cases. To understand the biological basis of response to anti-TNF therapy, we conducted a genome-wide association study (GWAS) meta-analysis of more than 2 million common variants in 2,706 RA patients from 13 different collections. Patients were treated with one of three anti-TNF medications: etanercept (n = 733), infliximab (n = 894), or adalimumab (n = 1,071). We identified a SNP (rs6427528) at the 1q23 locus that was associated with change in disease activity score (ΔDAS) in the etanercept subset of patients (P = 8×10-8), but not in the infliximab or adalimumab subsets (P>0.05). The SNP is predicted to disrupt transcription factor binding site motifs in the 3′ UTR of an immune-related gene, CD84, and the allele associated with better response to etanercept was associated with higher CD84 gene expression in peripheral blood mononuclear cells (P = 1×10-11 in 228 non-RA patients and P = 0.004 in 132 RA patients). Consistent with the genetic findings, higher CD84 gene expression correlated with lower cross-sectional DAS (P = 0.02, n = 210) and showed a non-significant trend for better ΔDAS in a subset of RA patients with gene expression data (n = 31, etanercept-treated). A small, multi-ethnic replication showed a non-significant trend towards an association among etanercept-treated RA patients of Portuguese ancestry (n = 139, P = 0.4), but no association among patients of Japanese ancestry (n = 151, P = 0.8). Our study demonstrates that an allele associated with response to etanercept therapy is also associated with CD84 gene expression, and further that CD84 expression correlates with disease activity. These findings support a model in which CD84 genotypes and/or expression may serve as a useful biomarker for response to etanercept treatment in RA patients of European ancestry. © 2013 Cui et al
    corecore