21 research outputs found

    Toward a Quantitative Estimate of Future Heat Wave Mortality under Global Climate Change

    Get PDF
    Background: Climate change is anticipated to affect human health by changing the distribution of known risk factors. Heat waves have had debilitating effects on human mortality, and global climate models predict an increase in the frequency and severity of heat waves. The extent to which climate change will harm human health through changes in the distribution of heat waves and the sources of uncertainty in estimating these effects have not been studied extensively. Objectives: We estimated the future excess mortality attributable to heat waves under global climate change for a major U.S. city. Methods: We used a database comprising daily data from 1987 through 2005 on mortality from all nonaccidental causes, ambient levels of particulate matter and ozone, temperature, and dew point temperature for the city of Chicago, Illinois. We estimated the associations between heat waves and mortality in Chicago using Poisson regression models. Results: Under three different climate change scenarios for 2081–2100 and in the absence of adaptation, the city of Chicago could experience between 166 and 2,217 excess deaths per year attributable to heat waves, based on estimates from seven global climate models. We noted considerable variability in the projections of annual heat wave mortality; the largest source of variation was the choice of climate model. Conclusions: The impact of future heat waves on human health will likely be profound, and significant gains can be expected by lowering future carbon dioxide emissions

    Influence of the Southern Oscillation on tropospheric temperature

    No full text
    Time series for the Southern Oscillation Index (SOI) and global tropospheric temperature anomalies (GTTA) are compared for the 1958−2008 period. GTTA are represented by data from satellite microwave sensing units (MSU) for the period 1980–2008 and from radiosondes (RATPAC) for 1958–2008. After the removal from the data set of short periods of temperature perturbation that relate to near-equator volcanic eruption, we use derivatives to document the presence of a 5- to 7-month delayed close relationship between SOI and GTTA. Change in SOI accounts for 72% of the variance in GTTA for the 29-year-long MSU record and 68% of the variance in GTTA for the longer 50-year RATPAC record. Because El Niño−Southern Oscillation is known to exercise a particularly strong influence in the tropics, we also compared the SOI with tropical temperature anomalies between 20°S and 20°N. The results showed that SOI accounted for 81% of the variance in tropospheric temperature anomalies in the tropics. Overall the results suggest that the Southern Oscillation exercises a consistently dominant influence on mean global temperature, with a maximum effect in the tropics, except for periods when equatorial volcanism causes ad hoc cooling. That mean global tropospheric temperature has for the last 50 years fallen and risen in close accord with the SOI of 5–7 months earlier shows the potential of natural forcing mechanisms to account for most of the temperature variation
    corecore