43 research outputs found
The Role of Host Traits, Season and Group Size on Parasite Burdens in a Cooperative Mammal
The distribution of parasites among hosts is often characterised by a high degree of heterogeneity with a small number of hosts harbouring the majority of parasites. Such patterns of aggregation have been linked to variation in host exposure and susceptibility as well as parasite traits and environmental factors. Host exposure and susceptibility may differ with sexes, reproductive effort and group size. Furthermore, environmental factors may affect both the host and parasite directly and contribute to temporal heterogeneities in parasite loads. We investigated the contributions of host and parasite traits as well as season on parasite loads in highveld mole-rats (Cryptomys hottentotus pretoriae). This cooperative breeder exhibits a reproductive division of labour and animals live in colonies of varying sizes that procreate seasonally. Mole-rats were parasitised by lice, mites, cestodes and nematodes with mites (Androlaelaps sp.) and cestodes (Mathevotaenia sp.) being the dominant ecto- and endoparasites, respectively. Sex and reproductive status contributed little to the observed parasite prevalence and abundances possibly as a result of the shared burrow system. Clear seasonal patterns of parasite prevalence and abundance emerged with peaks in summer for mites and in winter for cestodes. Group size correlated negatively with mite abundance while it had no effect on cestode burdens and group membership affected infestation with both parasites. We propose that the mode of transmission as well as social factors constrain parasite propagation generating parasite patterns deviating from those commonly predicted
Effects of upward and downward social comparison information on the efficacy of an appearance-based sun protection intervention: a randomized, controlled experiment
This experiment examined the impact of adding upward and/or downward social comparison information on the efficacy of an appearance-based sun protection intervention (UV photos and photoaging information). Southern California college students (N = 126) were randomly assigned to one of four conditions: control, intervention, intervention plus upward social comparison, intervention plus downward social comparison. The results demonstrated that all those who received the basic UV photo/photoaging intervention reported greater perceived susceptibility to photoaging (d = .74), less favorable tanning cognitions (d = .44), and greater intentions to sun protect (d = 1.32) relative to controls. Of more interest, while the basic intervention increased sun protective behavior during the subsequent 5 weeks relative to controls (d = .44), the addition of downward comparison information completely negated this benefit. Upward comparison information produced sun protection levels that were only slightly (and nonsignificantly) greater than in the basic intervention condition and, as such, does not appear to be a cost-effective addition. Possible mechanisms that may have reduced the benefits of upward comparison information and contributed to the undermining effects of downward comparison information are discussed
Oncogenic Pathway Combinations Predict Clinical Prognosis in Gastric Cancer
Many solid cancers are known to exhibit a high degree of heterogeneity in their deregulation of different oncogenic pathways. We sought to identify major oncogenic pathways in gastric cancer (GC) with significant relationships to patient survival. Using gene expression signatures, we devised an in silico strategy to map patterns of oncogenic pathway activation in 301 primary gastric cancers, the second highest cause of global cancer mortality. We identified three oncogenic pathways (proliferation/stem cell, NF-κB, and Wnt/β-catenin) deregulated in the majority (>70%) of gastric cancers. We functionally validated these pathway predictions in a panel of gastric cancer cell lines. Patient stratification by oncogenic pathway combinations showed reproducible and significant survival differences in multiple cohorts, suggesting that pathway interactions may play an important role in influencing disease behavior. Individual GCs can be successfully taxonomized by oncogenic pathway activity into biologically and clinically relevant subgroups. Predicting pathway activity by expression signatures thus permits the study of multiple cancer-related pathways interacting simultaneously in primary cancers, at a scale not currently achievable by other platforms
The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats
The Mediterranean Sea is a marine biodiversity hot spot. Here we combined an extensive literature analysis with expert opinions to update publicly available estimates of major taxa in this marine ecosystem and to revise and update several species lists. We also assessed overall spatial and temporal patterns of species diversity and identified major changes and threats. Our results listed approximately 17,000 marine species occurring in the Mediterranean Sea. However, our estimates of marine diversity are still incomplete as yet—undescribed species will be added in the future. Diversity for microbes is substantially underestimated, and the deep-sea areas and portions of the southern and eastern region are still poorly known. In addition, the invasion of alien species is a crucial factor that will continue to change the biodiversity of the Mediterranean, mainly in its eastern basin that can spread rapidly northwards and westwards due to the warming of the Mediterranean Sea. Spatial patterns showed a general decrease in biodiversity from northwestern to southeastern regions following a gradient of production, with some exceptions and caution due to gaps in our knowledge of the biota along the southern and eastern rims. Biodiversity was also generally higher in coastal areas and continental shelves, and decreases with depth. Temporal trends indicated that overexploitation and habitat loss have been the main human drivers of historical changes in biodiversity. At present, habitat loss and degradation, followed by fishing impacts, pollution, climate change, eutrophication, and the establishment of alien species are the most important threats and affect the greatest number of taxonomic groups. All these impacts are expected to grow in importance in the future, especially climate change and habitat degradation. The spatial identification of hot spots highlighted the ecological importance of most of the western Mediterranean shelves (and in particular, the Strait of Gibraltar and the adjacent Alboran Sea), western African coast, the Adriatic, and the Aegean Sea, which show high concentrations of endangered, threatened, or vulnerable species. The Levantine Basin, severely impacted by the invasion of species, is endangered as well
Quality assessment of Affymetrix GeneChip data using the EM algorithm and a naïve Bayes classifier
Recent research has demonstrated the utility of using supervised classification systems for automatic identification of low quality microarray data. However, this approach requires annotation of a large training set by a qualified expert. In this paper we demonstrate the utility of an unsupervised classification technique based on the Expectation-Maximization (EM) algorithm and naive Bayes classification. On our test set, this system exhibits performance comparable to that of an analogous supervised learner constructed from the same training data