182 research outputs found
Guest Artist Recital: Soon-Ik Lee, Violin; Anna McGrosso Piano; January 31, 1975
Hayden AuditoriumFriday EveningJanuary 31, 19758:15 p.m
Germline genetic variation and predicting immune checkpoint inhibitor induced toxicity
Immune checkpoint inhibitor (ICI) therapy has revolutionised the treatment of various cancer types. ICIs reinstate T-cell function to elicit an anti-cancer immune response. The resulting immune response can however have off-target effects which manifest as autoimmune type serious immune-related adverse events (irAE) in ~10–55% of patients treated. It is currently challenging to predict both who will experience irAEs and to what severity. Identification of patients at high risk of serious irAE would revolutionise patient care. While the pathogenesis driving irAE development is still unclear, host genetic factors are proposed to be key determinants of these events. This review presents current evidence supporting the role of the host genome in determining risk of irAE. We summarise the spectrum and timing of irAEs following treatment with ICIs and describe currently reported germline genetic variation associated with expression of immuno-modulatory factors within the cancer immunity cycle, development of autoimmune disease and irAE occurrence. We propose that germline genetic determinants of host immune function and autoimmune diseases could also explain risk of irAE development. We also endorse genome-wide association studies of patients being treated with ICIs to identify genetic variants that can be used in polygenic risk scores to predict risk of irAE
Neuroprotective properties of levosimendan in an in vitro model of traumatic brain injury
<p>Abstract</p> <p>Background</p> <p>We investigated the neuroprotective properties of levosimendan, a novel inodilator, in an in vitro model of traumatic brain injury.</p> <p>Methods</p> <p>Organotypic hippocampal brain slices from mouse pups were subjected to a focal mechanical trauma. Slices were treated after the injury with three different concentrations of levosimendan (0.001, 0.01 and 0.1 μM) and compared to vehicle-treated slices. After 72 hrs, the trauma was quantified using propidium iodide to mark the injured cells.</p> <p>Results</p> <p>A significant dose-dependent reduction of both total and secondary tissue injury was observed in cells treated with either 0.01 or 0.1 μM levosimendan compared to vehicle-treated slices.</p> <p><b>Conclusion</b></p> <p>Levosimendan represents a promising new pharmacological tool for neuroprotection after brain injury and warrants further investigation in an in vivo model.</p
Legionella pneumophila serogroup 3 pneumonia in a patient with low-grade 4 non-Hodgkin lymphoma: a case report
<p>Abstract</p> <p>Introduction</p> <p>Nosocomial legionellosis has generally been described in immunodepressed patients, but <it>Legionella pneumophila </it>serogroup 3 has rarely been identified as the causative agent.</p> <p>Case presentation</p> <p>We report the case of nosocomial <it>L. pneumophila </it>serogroup 3 pneumonia in a 70-year-old Caucasian man with non-Hodgkin lymphoma. Diagnosis was carried out by culture and real-time polymerase chain reaction of bronchoalveolar lavage fluid. The results of a urinary antigen test were negative. A hospital environmental investigation revealed that the hospital water system was highly colonized by <it>L. pneumophila </it>serogroups 3, 4, and 8. The hospital team involved in the prevention of infections was informed, long-term control measures to reduce the environmental bacterial load were adopted, and clinical monitoring of legionellosis occurrence in high-risk patients was performed. No further cases of <it>Legionella </it>pneumonia have been observed so far.</p> <p>Conclusions</p> <p>In this report, we describe a case of legionellosis caused by <it>L. pneumophila </it>serogroup 3, which is not usually a causative agent of nosocomial infection. Our research confirms the importance of carrying out cultures of respiratory secretions to diagnose legionellosis and highlights the limited value of the urinary antigen test for hospital infections, especially in immunocompromised patients. It also indicates that, to reduce the bacterial load and prevent nosocomial legionellosis, appropriate control measures should be implemented with systematic monitoring of hospital water systems.</p
Racial Differences in the Association Between Luminal Master Regulator Gene Expression Levels and Breast Cancer Survival
Compared with their European American (EA) counterparts, African American (AA) women are more likely to die from breast cancer in the United States. This disparity is greatest in hormone receptor-positive subtypes. Here we uncover biological factors underlying this disparity by comparing functional expression and prognostic significance of master transcriptional regulators of luminal differentiation.Fil: Byun, Jung S.. National Institutes of Health; Estados UnidosFil: Singhal, Sandeep K.. Columbia University; Estados UnidosFil: Park, Samson. National Institutes of Health; Estados UnidosFil: Yi, Dae Ik. National Institutes of Health; Estados UnidosFil: Yan, Tingfen. National Institutes of Health; Estados UnidosFil: Caban, Ambar. Columbia University Medical Center; Estados UnidosFil: Jones, Alana. National Institutes of Health; Estados UnidosFil: Mukhopadhyay, Partha. Columbia University Medical Center; Estados UnidosFil: Gille, Sarah. National Institutes of Health; Estados UnidosFil: Hewitt, Stephen M.. No especifíca;Fil: Newman, Lisa. No especifíca;Fil: Davis, Melissa B.. Henry Ford Health System; Estados UnidosFil: Jenkins, Brittany D.. Henry Ford Health System; Estados UnidosFil: Sepulveda, Jorge L.. Columbia University Medical Center; Estados UnidosFil: de Siervi, Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Nápoles, Anna María. National Institute On Minority Health And Health Disparities; Estados UnidosFil: Vohra, Nasreen A.. East Carolina University; Estados UnidosFil: Gardner, Kevin. Columbia University Medical Center; Estados Unido
Brain structural covariance networks in obsessive-compulsive disorder: a graph analysis from the ENIGMA Consortium.
Brain structural covariance networks reflect covariation in morphology of different brain areas and are thought to reflect common trajectories in brain development and maturation. Large-scale investigation of structural covariance networks in obsessive-compulsive disorder (OCD) may provide clues to the pathophysiology of this neurodevelopmental disorder. Using T1-weighted MRI scans acquired from 1616 individuals with OCD and 1463 healthy controls across 37 datasets participating in the ENIGMA-OCD Working Group, we calculated intra-individual brain structural covariance networks (using the bilaterally-averaged values of 33 cortical surface areas, 33 cortical thickness values, and six subcortical volumes), in which edge weights were proportional to the similarity between two brain morphological features in terms of deviation from healthy controls (i.e. z-score transformed). Global networks were characterized using measures of network segregation (clustering and modularity), network integration (global efficiency), and their balance (small-worldness), and their community membership was assessed. Hub profiling of regional networks was undertaken using measures of betweenness, closeness, and eigenvector centrality. Individually calculated network measures were integrated across the 37 datasets using a meta-analytical approach. These network measures were summated across the network density range of K = 0.10-0.25 per participant, and were integrated across the 37 datasets using a meta-analytical approach. Compared with healthy controls, at a global level, the structural covariance networks of OCD showed lower clustering (P < 0.0001), lower modularity (P < 0.0001), and lower small-worldness (P = 0.017). Detection of community membership emphasized lower network segregation in OCD compared to healthy controls. At the regional level, there were lower (rank-transformed) centrality values in OCD for volume of caudate nucleus and thalamus, and surface area of paracentral cortex, indicative of altered distribution of brain hubs. Centrality of cingulate and orbito-frontal as well as other brain areas was associated with OCD illness duration, suggesting greater involvement of these brain areas with illness chronicity. In summary, the findings of this study, the largest brain structural covariance study of OCD to date, point to a less segregated organization of structural covariance networks in OCD, and reorganization of brain hubs. The segregation findings suggest a possible signature of altered brain morphometry in OCD, while the hub findings point to OCD-related alterations in trajectories of brain development and maturation, particularly in cingulate and orbitofrontal regions
Up-regulation of cell cycle arrest protein BTG2 correlates with increased overall survival in breast cancer, as detected by immunohistochemistry using tissue microarray
<p>Abstract</p> <p>Background</p> <p>Previous studies have shown that the <it>ADIPOR1</it>, <it>ADORA1</it>, <it>BTG2 </it>and <it>CD46 </it>genes differ significantly between long-term survivors of breast cancer and deceased patients, both in levels of gene expression and DNA copy numbers. The aim of this study was to characterize the expression of the corresponding proteins in breast carcinoma and to determine their correlation with clinical outcome.</p> <p>Methods</p> <p>Protein expression was evaluated using immunohistochemistry in an independent breast cancer cohort of 144 samples represented on tissue microarrays. Fisher's exact test was used to analyze the differences in protein expression between dead and alive patients. We used Cox-regression multivariate analysis to assess whether the new markers predict the survival status of the patients better than the currently used markers.</p> <p>Results</p> <p>BTG2 expression was demonstrated in a significantly lower proportion of samples from dead patients compared to alive patients, both in overall expression (<it>P </it>= 0.026) and cell membrane specific expression (<it>P </it>= 0.013), whereas neither ADIPOR1, ADORA1 nor CD46 showed differential expression in the two survival groups. Furthermore, a multivariate analysis showed that a model containing BTG2 expression in combination with HER2 and Ki67 expression along with patient age performed better than a model containing the currently used prognostic markers (tumour size, nodal status, HER2 expression, hormone receptor status, histological grade, and patient age). Interestingly, BTG2 has previously been described as a tumour suppressor gene involved in cell cycle arrest and p53 signalling.</p> <p>Conclusions</p> <p>We conclude that high-level BTG2 protein expression correlates with prolonged survival in patients with breast carcinoma.</p
Dimerization of Translationally Controlled Tumor Protein Is Essential For Its Cytokine-Like Activity
BACKGROUND:Translationally Controlled Tumor Protein (TCTP) found in nasal lavage fluids of allergic patients was named IgE-dependent histamine-releasing factor (HRF). Human recombinant HRF (HrHRF) has been recently reported to be much less effective than HRF produced from activated mononuclear cells (HRFmn). METHODS AND FINDINGS:We found that only NH(2)-terminal truncated, but not C-terminal truncated, TCTP shows cytokine releasing activity compared to full-length TCTP. Interestingly, only NH(2)-terminal truncated TCTP, unlike full-length TCTP, forms dimers through intermolecular disulfide bonds. We tested the activity of dimerized full-length TCTP generated by fusing it to rabbit Fc region. The untruncated-full length protein (Fc-HrTCTP) was more active than HrTCTP in BEAS-2B cells, suggesting that dimerization of TCTP, rather than truncation, is essential for the activation of TCTP in allergic responses. We used confocal microscopy to evaluate the affinity of TCTPs to its putative receptor. We detected stronger fluorescence in the plasma membrane of BEAS-2B cells incubated with Del-N11TCTP than those incubated with rat recombinant TCTP (RrTCTP). Allergenic activity of Del-N11TCTP prompted us to see whether the NH(2)-terminal truncated TCTP can induce allergic airway inflammation in vivo. While RrTCTP had no influence on airway inflammation, Del-N11TCTP increased goblet cell hyperplasia in both lung and rhinal cavity. The dimerized protein was found in sera from allergic patients, and bronchoalveolar lavage fluids from airway inflamed mice. CONCLUSIONS:Dimerization of TCTP seems to be essential for its cytokine-like activity. Our study has potential to enhance the understanding of pathogenesis of allergic disease and provide a target for allergic drug development
Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.
Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition
- …