1,084 research outputs found

    An emerging role for IQGAP1 in tight junction control

    Get PDF
    © 2016, © 2016 The Author(s). Published with license by Taylor & Francis. © 2016, © Barbara E. Tanos, Charles Yeaman, and Enrique Rodriguez-Boulan. IQGAP1 is a scaffold protein involved in the assembly of adherens junctions. Our work has recently revealed a novel role for IQGAP1 in the regulation of tight junctions (TJ) through differential recruitment of claudins to the nascent TJ. Here, we discuss the potential mechanisms of this regulation, including IQGAP1 effects on CDC42, and IQGAP1 interactions with sorting/trafficking molecules (e.g. Exo70). Given the many roles of IQGAP1 and the large number of interacting partners, we focus our discussion of these functions in the context of junction formation, trafficking, growth factor signaling and cancer. We also propose a potential role for IQGAP1 in regulating epithelial integrity and compartmentalized signaling in epithelia

    A test of general relativity from the three-dimensional orbital geometry of a binary pulsar

    Get PDF
    Binary pulsars provide an excellent system for testing general relativity because of their intrinsic rotational stability and the precision with which radio observations can be used to determine their orbital dynamics. Measurements of the rate of orbital decay of two pulsars have been shown to be consistent with the emission of gravitational waves as predicted by general relativity, providing the most convincing evidence for the self-consistency of the theory to date. However, independent verification of the orbital geometry in these systems was not possible. Such verification may be obtained by determining the orientation of a binary pulsar system using only classical geometric constraints, permitting an independent prediction of general relativistic effects. Here we report high-precision timing of the nearby binary millisecond pulsar PSR J0437-4715, which establish the three-dimensional structure of its orbit. We see the expected retardation of the pulse signal arising from the curvature of space-time in the vicinity of the companion object (the `Shapiro delay'), and we determine the mass of the pulsar and its white dwarf companion. Such mass determinations contribute to our understanding of the origin and evolution of neutron stars.Comment: 5 pages, 2 figure

    Reductive conjugate addition nitro-Mannich route for the stereoselective synthesis of 1,2,3,4-tetrahydroquinoxalines

    Get PDF
    A concise, high yielding and structurally divergent synthesis of complex 1,2,3,4-tetrahydroquinoxalines with excellent diastereoselectivity is described. A wide array of nitroalkenes and imines derived from commercially available aromatic aldehydes and 2-chloroanalines were subjected to a key reductive conjugate addition nitro-Mannich reaction to give diastereomerically pure β-nitro amines. Sequential reduction of the nitro function followed by Pd-catalyzed intramolecular N-arylation of the resultant primary amine onto the 2-chloroanailine gives highly substituted 1,2,3,4-tetrahydroquinoxalines. Non basic imines were found to participate better in the nitro-Mannich reaction if the stronger acid methanesulfonic acid was used to promote the reaction. The 3 step reaction sequence should be useful for the array synthesis of drug like scaffolds

    Location, location, location: considerations when using lightweight drones in challenging environments

    Get PDF
    Lightweight drones have emerged recently as a remote sensing survey tool of choice for ecologists, conservation practitioners and environmental scientists. In published work, there are plentiful details on the parameters and settings used for successful data capture, but in contrast there is a dearth of information describing the operational complexity of drone deployment. Information about the practices of flying in the field, whilst currently lacking, would be useful for others embarking on new drone-based investigations. As a group of drone-piloting scientists, we have operated lightweight drones for research in over 25 projects, in over 10 countries, and in polar, desert, coastal and tropical ecosystems, with many hundreds of hours of flying experience between us. The purpose of this paper was to document the lesser-reported methodological pitfalls of drone deployments so that other scientists can understand the spectrum of considerations that need to be accounted for prior to, and during drone survey flights. Herein, we describe the most common challenges encountered, alongside mitigation and remediation actions that increase the chances of safe and successful data capture. Challenges are grouped into the following categories: (i) pre-flight planning, (ii) flight operations, (iii) weather, (iv) redundancy, (v) data quality, (vi) batteries. We also discuss the importance of scientists undertaking ethical assessment of their drone practices, to identify and mitigate potential conflicts associated with drone use in particular areas. By sharing our experience, our intention is that the paper will assist those embarking on new drone deployments, increasing the efficacy of acquiring high-quality data from this new proximal aerial viewpoint.This work was supported by the Natural Environment Research Council [NE/K570009815], [NE/K500902/1] (to AMC), [NE/M016323/1] (to IHM-S), [NE/570009815] (to JPD) and the UK Technology Strategy Board [TS/K00266X/1] (to KA). JS and KA were partly supported by the European Space Agency contract No. 4000117644/16/NL/FF/gp

    Binary and Millisecond Pulsars at the New Millennium

    Get PDF
    We review the properties and applications of binary and millisecond pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1300. There are now 56 binary and millisecond pulsars in the Galactic disk and a further 47 in globular clusters. This review is concerned primarily with the results and spin-offs from these surveys which are of particular interest to the relativity community.Comment: 59 pages, 26 figures, 5 tables. Accepted for publication in Living Reviews in Relativity (http://www.livingreviews.org

    Mapping gene associations in human mitochondria using clinical disease phenotypes

    Get PDF
    Nuclear genes encode most mitochondrial proteins, and their mutations cause diverse and debilitating clinical disorders. To date, 1,200 of these mitochondrial genes have been recorded, while no standardized catalog exists of the associated clinical phenotypes. Such a catalog would be useful to develop methods to analyze human phenotypic data, to determine genotype-phenotype relations among many genes and diseases, and to support the clinical diagnosis of mitochondrial disorders. Here we establish a clinical phenotype catalog of 174 mitochondrial disease genes and study associations of diseases and genes. Phenotypic features such as clinical signs and symptoms were manually annotated from full-text medical articles and classified based on the hierarchical MeSH ontology. This classification of phenotypic features of each gene allowed for the comparison of diseases between different genes. In turn, we were then able to measure the phenotypic associations of disease genes for which we calculated a quantitative value that is based on their shared phenotypic features. The results showed that genes sharing more similar phenotypes have a stronger tendency for functional interactions, proving the usefulness of phenotype similarity values in disease gene network analysis. We then constructed a functional network of mitochondrial genes and discovered a higher connectivity for non-disease than for disease genes, and a tendency of disease genes to interact with each other. Utilizing these differences, we propose 168 candidate genes that resemble the characteristic interaction patterns of mitochondrial disease genes. Through their network associations, the candidates are further prioritized for the study of specific disorders such as optic neuropathies and Parkinson disease. Most mitochondrial disease phenotypes involve several clinical categories including neurologic, metabolic, and gastrointestinal disorders, which might indicate the effects of gene defects within the mitochondrial system. The accompanying knowledgebase (http://www.mitophenome.org/) supports the study of clinical diseases and associated genes

    Genome-wide analysis of ivermectin response by Onchocerca volvulus reveals that genetic drift and soft selective sweeps contribute to loss of drug sensitivity

    Get PDF
    Treatment of onchocerciasis using mass ivermectin administration has reduced morbidity and transmission throughout Africa and Central/South America. Mass drug administration is likely to exert selection pressure on parasites, and phenotypic and genetic changes in several Onchocerca volvulus populations from Cameroon and Ghana-exposed to more than a decade of regular ivermectin treatment-have raised concern that sub-optimal responses to ivermectin's anti-fecundity effect are becoming more frequent and may spread.Pooled next generation sequencing (Pool-seq) was used to characterise genetic diversity within and between 108 adult female worms differing in ivermectin treatment history and response. Genome-wide analyses revealed genetic variation that significantly differentiated good responder (GR) and sub-optimal responder (SOR) parasites. These variants were not randomly distributed but clustered in ~31 quantitative trait loci (QTLs), with little overlap in putative QTL position and gene content between the two countries. Published candidate ivermectin SOR genes were largely absent in these regions; QTLs differentiating GR and SOR worms were enriched for genes in molecular pathways associated with neurotransmission, development, and stress responses. Finally, single worm genotyping demonstrated that geographic isolation and genetic change over time (in the presence of drug exposure) had a significantly greater role in shaping genetic diversity than the evolution of SOR.This study is one of the first genome-wide association analyses in a parasitic nematode, and provides insight into the genomics of ivermectin response and population structure of O. volvulus. We argue that ivermectin response is a polygenically-determined quantitative trait (QT) whereby identical or related molecular pathways but not necessarily individual genes are likely to determine the extent of ivermectin response in different parasite populations. Furthermore, we propose that genetic drift rather than genetic selection of SOR is the underlying driver of population differentiation, which has significant implications for the emergence and potential spread of SOR within and between these parasite populations

    Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer

    Get PDF
    INTRODUCTION Breast cancer remains a significant scientific, clinical and societal challenge. This gap analysis has reviewed and critically assessed enduring issues and new challenges emerging from recent research, and proposes strategies for translating solutions into practice. METHODS More than 100 internationally recognised specialist breast cancer scientists, clinicians and healthcare professionals collaborated to address nine thematic areas: genetics, epigenetics and epidemiology; molecular pathology and cell biology; hormonal influences and endocrine therapy; imaging, detection and screening; current/novel therapies and biomarkers; drug resistance; metastasis, angiogenesis, circulating tumour cells, cancer 'stem' cells; risk and prevention; living with and managing breast cancer and its treatment. The groups developed summary papers through an iterative process which, following further appraisal from experts and patients, were melded into this summary account. RESULTS The 10 major gaps identified were: (1) understanding the functions and contextual interactions of genetic and epigenetic changes in normal breast development and during malignant transformation; (2) how to implement sustainable lifestyle changes (diet, exercise and weight) and chemopreventive strategies; (3) the need for tailored screening approaches including clinically actionable tests; (4) enhancing knowledge of molecular drivers behind breast cancer subtypes, progression and metastasis; (5) understanding the molecular mechanisms of tumour heterogeneity, dormancy, de novo or acquired resistance and how to target key nodes in these dynamic processes; (6) developing validated markers for chemosensitivity and radiosensitivity; (7) understanding the optimal duration, sequencing and rational combinations of treatment for improved personalised therapy; (8) validating multimodality imaging biomarkers for minimally invasive diagnosis and monitoring of responses in primary and metastatic disease; (9) developing interventions and support to improve the survivorship experience; (10) a continuing need for clinical material for translational research derived from normal breast, blood, primary, relapsed, metastatic and drug-resistant cancers with expert bioinformatics support to maximise its utility. The proposed infrastructural enablers include enhanced resources to support clinically relevant in vitro and in vivo tumour models; improved access to appropriate, fully annotated clinical samples; extended biomarker discovery, validation and standardisation; and facilitated cross-discipline working. CONCLUSIONS With resources to conduct further high-quality targeted research focusing on the gaps identified, increased knowledge translating into improved clinical care should be achievable within five years

    A note on the Kutta condition in Glauert's solution of the thin aerofoil problem

    Get PDF
    Glauert's classical solution of the thin aerofoil problem (a coordinate transformation, and splitting the solution into a sum of a singular part and an assumed regular part written as a Fourier sine series) is usually presented in textbooks on aerodynamics without a great deal of attention being paid to the rôle of the Kutta condition. Sometimes the solution is merely stated, apparently satisfying the Kutta condition automatically. Quite often, however, it is misleadingly suggested that it is by the choice of a sine series that the Kutta condition is satisfied. It is shown here that if Glauert's approach is interpreted in the context of generalised functions, (1) the whole solution, i.e. both the singular part and any non-Kutta condition solution, can be written as a sine-series, and (2) it is really the coordinate transformation which compels the Kutta condition to be satisfied, as it enhances the edge singularities from integrable to non-integrable, and so sifts out solutions not normally representable by a Fourier series. Furthermore, the present method provides a very direct way to construct other, more singular solutions. A practical consequence is that (at least, in principle) in numerical solutions based on Glauert's method, more is needed for the Kutta condition than a sine series expansion
    corecore