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An emerging role for IQGAP1 in tight junction control
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ABSTRACT
IQGAP1 is a scaffold protein involved in the assembly of adherens junctions. Our work has recently
revealed a novel role for IQGAP1 in the regulation of tight junctions (TJ) through differential
recruitment of claudins to the nascent TJ. Here, we discuss the potential mechanisms of this
regulation, including IQGAP1 effects on CDC42, and IQGAP1 interactions with sorting/trafficking
molecules (e.g. Exo70). Given the many roles of IQGAP1 and the large number of interacting
partners, we focus our discussion of these functions in the context of junction formation, trafficking,
growth factor signaling and cancer. We also propose a potential role for IQGAP1 in regulating
epithelial integrity and compartmentalized signaling in epithelia.
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Introduction

Epithelial integrity and cell-to cell adhesion are estab-
lished and sustained by functional protein modules that
assemble adherens junctions (AJ), tight junctions (TJ)
and desmosomes (see Nelson1). Tight junctions are vital
for tissue homeostasis as they control paracellular per-
meability (gate function) and promote a physical separa-
tion between the apical and basolateral side of polarized
cells (fence function).2-5 Consistent with these roles,
junctions are often deregulated in a number of pathologi-
cal states such as bowel inflammatory disease,6 polycystic
kidney disease,7 diabetic retinopathy8 and macular
degeneration.9 Epithelial structures are also often misre-
gulated in cancer, where tissue invasion and metastasis
rely on altered morphogenesis and rearrangement of
junctional proteins.10,11 Cell-to-cell junctions need to
form and dissolve at a fast pace, not only for cell migra-
tion, but to accommodate transitions between collective
migration and invasion at different cancer stages.

IQGAP1 belongs to a family of scaffolding proteins
that interact with signaling and structural molecules, and
regulate a number of biological processes.12-14 It has been
shown to be an effector of Ras-superfamily small
GTPases, including RAS,15 CDC42, and RAC.16 In epithe-
lial cells, IQGAP1 localizes to sites of cell–cell contact16

where it inhibits E-cadherin-mediated adhesion.17,18

Importantly, IQGAP1 is required for Ras-dependent
tumorigenesis15,19 in an experimental model, and is highly
overexpressed in a number of human tumors, suggesting
that IQGAP1 can regulate aspects of oncogenic behavior.
However, given its many interactors and seemingly
diverse biological activities, how can IQGAP1 achieve
functional specificity?

To answer this question, a more refined understanding
of how IQGAP1 regulates signaling cell autonomously,
and whether it can facilitate compartmentalized signaling
in multi-cellular epithelia is clearly needed. Given its role
in protein trafficking, we recently explored the possibility
that IQGAP1 could regulate TJ formation by modulating
the expression and/or localization of junctional proteins.
We systematically tested this hypothesis in the model cell
line MDCK,20 and found that IQGAP1 silencing caused a
transient CDC42-dependent increase in transepithelial
electrical resistance (TER) during the early stages of TJ for-
mation.21 Since the strength of the IQGAP1-CDC42 inter-
action was found to be inversely correlated with TER
during epithelia formation, we suspect that IQGAP1 has
an inhibitory effect toward CDC42 during tight junction
formation. Interestingly, we found that IQGAP1 knock-
down (KD) resulted in enhanced claudin 4 localization to
TJ and reduced claudin 2 expression and localization to
TJs, suggesting this as the mechanism for the observed
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increase in TER. Thus, we identified IQGAP1 as an
important player in the establishment of TJs, and estab-
lished a mechanistic link between IQGAP1, CDC42, and
the spatial regulation of claudins at the onset of epithelial
polarity.

In this review, we elaborate on our finding that
IQGAP1 regulates TJs, and discuss possible mechanisms
of how IQGAP1 could regulate claudin trafficking to the
forming junctions. Additionally, we discuss the potential
role of IQGAP1 in regulating compartmentalized signal-
ing in polarized epithelia, the potential crosstalk between
growth factor receptor signaling and TJ assembly, and
the implications of IQGAP1 deregulation in cancer.

IQGAP1 and its role in cell-cell adhesion

IQGAP1 is the best characterized member of a family of
scaffolding proteins that includes IQGAP1, IQGAP2,
and IQGAP3 (Fig. 1). IQGAP1 regulates a number of
biological processes by providing a platform for complex
assembly and signal transduction (reviewed in ref. 22).
Not surprisingly, its deregulation has been linked with a
variety of human cancers, particularly in tumors that
have lost epithelial polarity, where it is highly overex-
pressed.23 Furthermore, ectopic IQGAP1 overexpression
promotes increased cell proliferation and invasion in
breast epithelial cells.23,24

Figure 1. IQGAP1 interacting proteins can regulate a number of cellular functions. (A) IQGAP1 domain structure. Diagram depicting
IQGAP1 domains and a number of interacting proteins. As many as 300 interactions have been documented for IQGAP1. We have listed
a subset of these interactors that are relevant for cargo trafficking. (B) Model for selective regulation of TJ formation by IQGAP1. IQGAP1
promotes claudin 2 recruitment to the TJ, and blocks claudin 4 localization, thereby differentially regulating claudin localization to the
forming TJ. Further, IQGAP1 also controls Cdc42 function and Cdc42/JNK activation during TJ formation.
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IQGAP1 localizes to sites of cell-cell contact in epithe-
lial cells25 and has been shown to regulate E-cadherin-
mediated cell-cell adhesion and actin reorganization.18,25

Specifically, IQGAP1 inhibits adherens junction forma-
tion through sequestering E-Cadherin from cell-cell con-
tacts.17,18 We recently uncovered a novel role for
IQGAP1 in the regulation of tight junctions.21 Interest-
ingly, disruption of epithelial architecture is a common
feature of IQGAP1-overexpressing tumors,26 consistent
with the notion that epithelial polarity cues can be
hijacked by cancer cells.10 These mispolarized epithelia
are often characterized by downregulation or mislocali-
zation of tight junction proteins such as ZO-1 and clau-
dins.27 Based on these observations, we hypothesized
that IQGAP1 could potentially regulate TJ formation
through altering the expression or localization of TJ pro-
teins. To examine the role of IQGAP1 in TJ formation,
we measured the effects of IQGAP1 depletion on TER,
an indirect readout of tight junction strength. We found
that IQGAP1 knockdown promoted a significant
increase in the TER peak following calcium addition dur-
ing a calcium switch assay, which mimics epithelial
polarization. IQGAP1 knockdown (KD) promoted an
increase in junctional claudin 4 and a reduction in clau-
din 2 expression and TJ localization, providing a molecu-
lar explanation for the increase in TER,21 and illustrating
a likely consequence of disrupting IQGAP1 membrane
trafficking functions.28 Claudin 2 and claudin 4 are criti-
cal for gate function regulation. Claudin 2 increases con-
ductivity, reducing TER through a water permeable29

and cation-selective pore at the TJ30,31 whereas claudin
4 restricts paracellular conductance reducing Na (+) per-
meability.32 Accordingly, we and others have found that
in MDCK cells, depletion of claudin 2 through RNAi- or
gene-targeting-mediated approaches is sufficient to pro-
mote a TER increase.21,33

CDC42 has been shown to be required for TJ forma-
tion.34 For example, knockdown of CDC42 (or its effec-
tors PAK4 and Par6B) impairs junction formation in
bronchial epithelial cells.35 However, increased CDC42
activation can promote E-cadherin internalization and
degradation.36 Thus, CDC42 levels and activity have to
be tightly regulated to maintain tissue homeostasis. We
found that the IQGAP1-KD-mediated increase in TER
could be reversed by expression of dominant negative
CDC42, an interactor of IQGAP1. In addition, IQGAP1
KD promoted increased activation of JNK, a CDC42
effector. Thus, IQGAP1 may function in concert with
CDC42-JNK during polarity establishment21 (Fig. 1). In
airway epithelia, the CDC42 effector JNK has been
shown to be required for TJ barrier function.37 Consis-
tently, we found that IQGAP1 KD led to activation of

JNK in MDCK cells, thus, providing evidence of a role
for JNK in IQGAP1-regulated TJ formation.21

However, given the established role of IQGAP1 in
destabilizing adherens junctions, how does IQGAP1 con-
currently regulate tight junction formation to maintain
or establish appropriate cell-to-cell contacts? In the ini-
tial steps of epithelial polarization, immature junctional
patches are occupied by both E-Cadherin and ZO-1.38

ZO-1 subsequently moves up as TJ differentiate; the
mechanisms involved in this differentiation are
unknown. IQGAP1 might play a role not only by physi-
cally competing with E-Cadherin for junction occu-
pancy, but also indirectly through regulation of
E-cadherin trafficking, including E-cadherin recycling
back to the plasma membrane. Since we find that
IQGAP1 interacts with CDC42 throughout all cell polar-
ization steps,21 we suspect that the inhibitory role of
IQGAP1 in TJ formation involves sequestering CDC42
away from the junction. Interestingly, IQGAP1 has been
shown form a complex with PAK6 and E-Cadherin that
promotes cell dissociation in prostate cancer cells.39

Thus, through its scaffolding properties and binding to
different junctional proteins, IQGAP1 could modulate
both adherens and tight junction formation. In normal
epithelia, slowing down junction formation or reducing
tight junction strength might be necessary for adequate
building of the junctions through temporal regulation.

IQGAP1 and trafficking

During epithelial polarization, additional molecules are
recruited to junctional sites.

Tight junction components such as occludin and
claudin are delivered to the TJ via exocytosis by the
basolateral sorting machinery (reviewed in ref. 5).
Interestingly, IQGAP1 has been previously shown to
regulate exocytosis40 and may function as a regulator
of protein trafficking.28

We found that IQGAP1 knockdown led to a change in
the distribution of claudins during epithelial polarization.21

Additionally, IQGAP1 is known to interact with Exo70,40 a
component of the exocyst complex, a regulator of basolat-
erally directed trafficking in MDCK cells.41 Intriguingly,
we find that in MDCK cells, IQGAP1 interacts with Exo70
during epithelial polarization shortly after calcium switch,
but neither in calcium depleted, depolarized epithelia, nor
48-72 hours after a Calcium switch once epithelial polarity
has been established (Fig. 2). This suggests that the interac-
tion between IQGAP1 and Exo70 might be critical during
polarization, when specific sorting is required for establish-
ing the epithelia. Interestingly, the small GTPases RalA and
RalB have been shown to regulate the exocyst complex as
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well as junctional assembly in epithelial cells.42,43 RalA and
RalB specifically regulate tight junction strength and pro-
mote differential protein recruitment to the newly forming
TJ.44 RalB knockdown phenocopied the effects of IQGAP1
knockdown, both in terms of the TER increase as well as
claudin 4 and claudin 2 recruitment, while RalA knock-
down had opposite effects.44 These observations suggest
that RalA could regulate exocytosis of junctional proteins
for proper localization, whereas RalB could regulate endo-
cytosis and protein removal. Given that TJ assembly is an
active and complex process, it is likely that IQGAP1 and
Ral GTPases coordinately regulate protein recruitment to
the forming junction. However, a specific complex between
RalGTPases and IQGAP1 has not yet been demonstrated.
This might be due to the time-dependent nature of this
interaction. The complex might only assemble during

epithelial polarization, in specific cell types, or, alterna-
tively, it may require the exocyst to stabilize the interaction
(Fig. 3).

IQGAP1 also interacts with Eps15,45 an EH domain
containing protein which regulates trafficking in the
secretory pathway.46 EH domain-containing proteins
have been shown to regulate membrane curvature.47

Thus, it is tempting to speculate that IQGAP1 could
modulate the secretory pathway through sorting or dif-
ferential recruitment of proteins that influence mem-
brane architecture such as Eps15 (Fig. 3).

IQGAP1 and growth factor signaling

Where does IQGAP1 exert its effects? Our work suggests
that IQGAP1 differentially regulates sorting of different

Figure 2. IQGAP1 interacts with the exocyst complex during TJ formation. (A) IQGAP1 immunoprecipitation in calcium depleted cells
(indicated), or at different times following calcium addition in a calcium-switch experiment. Note that IQGAP1 levels are relatively
unchanged throughout the experiment, but that Exo70 is mostly recruited during the establishment of the epithelia (6h to 48 hours
after the calcium switch). (B) Cartoon depicting the IQGAP1/Exocyst complex interaction in the vicinity of the TJ, and its role in the differ-
ential recruitment of claudins.

378 B. E. TANOS ET AL.



proteins to the tight junction, akin to a bouncer at a club
deciding who goes through and who does not. It is likely
that the scaffolding properties of IQGAP1 enable these
sorting/trafficking capabilities. One possibility is that lipid
raft localization of IQGAP1 could generate specific
patches where a specific group of trafficking vesicles is tar-
geted to and/or sorted from. In support of this, IQGAP1
has been shown to interact with EGFR48 and to promote
EGFR phosphorylation by ERK1/2 that has specifically
been activated in lipid rafts.49 Interestingly, IQGAP1 has
also been shown to interact with the EGFR degradation
machinery,50 and, as mentioned above, with the traffick-
ing regulator Eps15,45 also a component of recycling
endosomes that modulates EGFR recycling to the plasma
membrane.51 Therefore, one could speculate that
IQGAP1 could control growth factor receptor activity by

determining the endocytic fate of receptor-associated
vesicles. Similarly, IQGAP1 might regulate claudin traf-
ficking to TJ junctions through sequestering claudin 4
and allowing claudin 2 to go through.

IQGAP1 and cancer

In tumor cells, claudin expression and localization is
modulated by the EGFR pathway, which is itself defective
in claudin 2 knockout mice.52 These observations suggest a
functional crosstalk between growth factor receptor
signaling and tight junctions. Further experiments using
fluorescently tagged claudins could help understand how
and when IQGAP1 directs this differential distribution of
claudins during TJ formation, and whether the EGFR

Figure 3. Model for IQGAP1 regulation of TJ formation. (i), IQGAP1 might function by sequestering Cdc42, thereby modulating its posi-
tive influence on TJ establishment, including activation of JNK. (ii), IQGAP1 interacts with the exocyst complex during TJ formation.
Such interaction might regulate the sorting of specific claudins to the TJ at specific times, therefore regulating its strength. (iii), IQGAP1
might function coordinately with Ral GTPases to regulate trafficking to the TJ, either through a direct interaction that has not been yet
identified, or through a link provided by the exocyst complex. (iv), IQGAP1 role in membrane trafficking/sorting could be facilitated by
its interaction with the EH-domain-containing protein Eps15. (v), an alternative hypothesis, is that IQGAP1 might sequester Cbl away
from the EGFR. This, in turn, could stabilize claudin 2,53 resulting in an increase in Claudin 2 expression and junctional localization. (vi),
Since IQGAP1 has been found in lipid rafts, where it promotes EGFR phosphorylation by ERK1/2, we hypothesize that IQGAP1 could
function as a signaling node and trafficking regulator in raft-like patches directing sorting/trafficking to the TJ.
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pathway cross-modulates this process. Alternatively,
IQGAP1 could function by hijacking Cbl45 away from
EGFR, and the accompanying degradation machinery,
thus preventing claudin 2 degradation and promoting
accumulation at the TJ. Interestingly, our results show both
a decrease in protein levels as well as TJ localization of clau-
din 2 in IQGAP1 deficient cells.21 Whether this decrease in
protein expression is dependent on the lysosomal machin-
ery, or what trafficking pathways might be involved
remains to be determined. Nevertheless, some experimen-
tal evidence points to a potential model. First, it has been
shown that the small GTPase rab14 controls claudin 2 lev-
els in coordination with PKC, by promoting the removal of
claudin-2 out of the lysosomal degradation pathway.53,54

Thus, it is possible that IQGAP1 could mediate removal of
claudin 2 from the lysosomal pathway by spatially regulat-
ing the relevant rab14 complex. Alternatively (or addition-
ally), IQGAP1 could influence the trafficking fate of
claudin 2, through spatial regulation of Eps15 (Fig. 3).

Another outstanding question regarding the effects of
IQGAP1 on claudin 4 is whether claudin 4 trafficking
might initially be associated to the nascent junction
through E-cadherin, and whether this trafficking is
dependent on the exocyst complex. Additional experi-
ments will also be needed to determine whether this
regulation is directly dependent on IQGAP1, or its
interactions with the exocyst complex40 (Fig. 2), CDC42,
or both. As overexpression of claudins serves as a marker
for malignant progression in some tumors,55 most
notably breast cancer,56 and given the multiple links
between the subcellular localization of claudins, IQGAP1,
TJs, and EGFR signaling, additional studies on claudin
localization in the context of claudin-overexpressing
EGFR-dependent tumors is warranted.

IQGAP1 and compartmentalized signaling

Despite the seemingly steady localization at the junction,
IQGAP1 might need to relocalize fast at specific times
during polarization, to be able to promote its multiple
functions. One example of this is IQGAP1 removal from
the site of T cell docking to cancer cells. During T cell acti-
vation, IQGAP1 moves swiftly out of the centriole dock-
ing site, along with the actin patch, allowing docking and
the release of lytic granules to the cancer cell.57 This fast
removal of IQGAP1 (and actin) immediately generates an
asymmetric compartment with fast vesicle movement
similar to a cilia transition zone.57,58 Tight junctions also
define an asymmetric border, apical vs basolateral, where
not only protein expression is different, but protein secre-
tion, receptor activation and trafficking. Thus, TJs enable
compartmentalized signals in polarized epithelia, where
the apical and basolateral plasma membrane domains are

physically separated, and molecularly and functionally
distinct. In both, tight junctions and the immunological
synapse, IQGAP1 may function as a molecular filter for
asymmetric signal transduction. In support of this view,
IQGAP1 has been shown to interact with Septin 2,40

which functions as a diffusion barrier for protein traffick-
ing to the ciliary transition zone.59

Furthermore, by regulating the speed at which TJs
form or immune cells dock, or through temporal and spa-
tial modulation of vesicular trafficking and growth factor
receptor activation, IQGAP1 could function as a quality
control (QC) mechanism. This QC mechanism likely
requires tightly regulated IQGAP1 levels, as IQGAP1
overexpression (e.g. during cancer) leads to decreased
junctional strength and disrupted cell architecture. Sup-
porting this point, we have found that IQGAP1 KD cells
showed increased columnar appearance and a significant
increase in cell height, probably as a result of increased
junctional strength.21

Final thoughts

Our recent work provided first-time evidence of an
inhibitory role for IQGAP1 in TJ formation during
epithelial polarization.21

Our data support a model of TJ formation that involves
IQGAP1-sensitive differential recruitment of claudin 2 and
claudin 4 to the TJ site, and IQGAP1-sensitive activation of
CDC42/JNK that likely facilitates junction maturation
(Fig. 1). Considering the clinical utility of claudin
expression as a prognostic marker in variety of human can-
cers60-62 and the link between TJ disruption and metastatic
disease,63 our work suggests that IQGAP1 could be a poten-
tial therapeutic target in advanced cancers. Of note, the
remaining IQGAP family members, namely IQGAP2 and
IQGAP3, have also been implicated in cancer24,64 and could
potentially regulate junction formation, either alone or
together with IQGAP1 or its binding partners.

The growing number of IQGAP1-interacting proteins
and the variety of regions within this large molecule to
which they bind suggest that perhaps distinct IQGAP1
domains may be functional at different times and/or
cellular locations resulting in different trafficking out-
comes. This could account for a number of promiscuous
IQGAP1 functions that depend on cellular context (e.g.,
tumor type) and ultimately result in asymmetric signal
transduction, and compartmentalized signaling at the
cellular and tissue level.

Abbreviations

AJ adherens junctions
EGFR Epidermal growth factor receptor
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KD knockdown
MDCK Madin-Darby canine kidney
TER transepithelial electrical resistance
TJ Tight junctions
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