42 research outputs found
Instanton effects in quark form factor and quark-quark scattering at high energy
The nonperturbative effects in the high-energy processes involving strongly
interacting particles are studied within the instanton liquid model of the QCD
vacuum (ILM) by using the Wilson integral framework. The detailed analysis of
nonperturbative contributions to the electromagnetic quark form factor is
presented considering the structure of the instanton induced effects in the
evolution equation describing the high energy behaviour of the form factor. It
is shown that the instantons yield in high energy limit the logarithmic
corrections to the amplitudes which are exponentiated in small instanton
density parameter. By using the Gaussian interpolation of the constrained
instanton solution, we show that the all-order multi-instanton contribution is
well approximated by the weak field limit result. The role of the instantons in
high energy diffractive quark-quark scattering, in particular, in formation of
the soft Pomeron, is also considered. We show that within the ILM the C-odd
diffractive amplitude is suppressed as 1/s compared to the C-even one. The
further applications of the developed approach in studying the nonperturbative
effects in high energy hadronic processes are briefly discussed.Comment: 37 pages + 9 figures; JHEP styl
Non-perturbative momentum dependence of the coupling constant and hadronic models
Models of hadron structure are associated with a hadronic scale which allows
by perturbative evolution to calculate observables in the deep inelastic
region. The resolution of Dyson-Schwinger equations leads to the freezing of
the QCD running coupling (effective charge) in the infrared, which is best
understood as a dynamical generation of a gluon mass function, giving rise to a
momentum dependence which is free from infrared divergences. We use this new
development to understand why perturbative treatments are working reasonably
well despite the smallness of the hadronic scale.Comment: Changes in Acknowledgments and PACS number
Transverse-Momentum Distributions and Spherical Symmetry
Transverse-momentum dependent parton distributions (TMDs) are studied in the
framework of quark models. In particular, quark model relations among TMDs are
reviewed and their physical origin is discussed in terms of rotational-symmetry
properties of the nucleon state in its rest frame.Comment: 8 pages, 2 figures, prepared for the workshop "30 years of strong
  interactions", Spa, Belgium, 6-8 April 201
Feynman rules for effective Regge action
Starting from the gauge invariant effective action in the quasi-multi-Regge
kinematics (QMRK), we obtain the effective reggeized gluon (R) -- particle (P)
vertices of the following types: , , , , , and
, where the on-mass-shell particles are gluons, or sets of gluons with
small invariant masses. The explicit expressions satisfying the Bose-symmetry
and gauge invariance conditions are obtained. As a comment to the Feynman rules
for derivation of the amplitudes in terms of effective vertices we present a
``vocabulary'' for practitioners.Comment: REVTeX, 21 pages, 10 figure
Factorization and infrared properties of non-perturbative contributions to DIS structure functions
In this paper we present a new derivation of the QCD factorization. We deduce
the k_T- and collinear factorizations for the DIS structure functions by
consecutive reductions of a more general theoretical construction. We begin by
studying the amplitude of the forward Compton scattering off a hadron target,
representing this amplitude as a set of convolutions of two blobs connected by
the simplest, two-parton intermediate states. Each blob in the convolutions can
contain both the perturbative and non-perturbative contributions. We formulate
conditions for separating the perturbative and non-perturbative contributions
and attributing them to the different blobs. After that the convolutions
correspond to the QCD factorization. Then we reduce this totally unintegrated
(basic) factorization first to the k_T- factorization and finally to the
collinear factorization. In order to yield a finite expression for the Compton
amplitude, the integration over the loop momentum in the basic factorization
must be free of both ultraviolet and infrared singularities. This obvious
mathematical requirement leads to theoretical restrictions on the
non-perturbative contributions (parton distributions) to the Compton amplitude
and the DIS structure functions related to the Compton amplitude through the
Optical theorem. In particular, our analysis excludes the use of the singular
factors x^{-a} (with a > 0) in the fits for the quark and gluon distributions
because such factors contradict to the integrability of the basic convolutions
for the Compton amplitude. This restriction is valid for all DIS structure
functions in the framework of both the k_T- factorization and the collinear
factorization if we attribute the perturbative contributions only to the upper
blob.Comment: 19 pages, 6 figure
Restoration of factorization for low hadron hadroproduction
We discuss the applicability of the  factorization theorem to low-
hadron production in hadron-hadron collision in a simple toy model, which
involves only scalar particles and gluons. It has been shown that the 
factorization for high- hadron hadroproduction is broken by soft gluons in
the Glauber region, which are exchanged among a transverse-momentum-dependent
(TMD) parton density and other subprocesses of the collision. We explain that
the contour of a loop momentum can be deformed away from the Glauber region at
low , so the above residual infrared divergence is factorized by means of
the standard eikonal approximation. The  factorization is then restored in
the sense that a TMD parton density maintains its universality. Because the
resultant Glauber factor is independent of hadron flavors, experimental
constraints on its behavior are possible. The  factorization can also be
restored for the transverse single-spin asymmetry in hadron-hadron collision at
low  in a similar way, with the residual infrared divergence being
factorized into the same Glauber factor.Comment: 12 pages, 2 figures, version to appear in EPJ
Left-right asymmetry for pion and kaon production in the semi-inclusive deep inelastic scattering process
We analyze the left-right asymmetry in the semi-inclusive deep inelastic
scattering (SIDIS) process without introducing any weighting functions. With
the current theoretical understanding, we find that the Sivers effect plays a
key role in our analysis. We use the latest parametrization of the Sivers and
fragmentation functions to reanalyze the  production process and find
that the results are sensitive to the parametrization. We also extend our
calculation on the  production, which can help us know more about the
Sivers distribution of the sea quarks and the unfavored fragmentation
processes. HERMES kinematics with a proton target, COMPASS kinematics with a
proton, deuteron, and neutron target (the information on the neutron target can
be effectively extracted from the He target), and JLab kinematics (both 6
GeV and 12 GeV) with a proton and neutron target are considered in our paper.Comment: 7 latex pages, 11 figures, final version for publication, with
  references update
Transverse Momentum Dependent Parton Distribution/Fragmentation Functions at an Electron-Ion Collider
We present a summary of a recent workshop held at Duke University on Partonic
Transverse Momentum in Hadrons: Quark Spin-Orbit Correlations and Quark-Gluon
Interactions. The transverse momentum dependent parton distribution functions
(TMDs), parton-to-hadron fragmentation functions, and multi-parton correlation
functions, were discussed extensively at the Duke workshop. In this paper, we
summarize first the theoretical issues concerning the study of partonic
structure of hadrons at a future electron-ion collider (EIC) with emphasis on
the TMDs. We then present simulation results on experimental studies of TMDs
through measurements of single spin asymmetries (SSA) from semi-inclusive
deep-inelastic scattering (SIDIS) processes with an EIC, and discuss the
requirement of the detector for SIDIS measurements. The dynamics of parton
correlations in the nucleon is further explored via a study of SSA in D (`D)
production at large transverse momenta with the aim of accessing the unexplored
tri-gluon correlation functions. The workshop participants identified the SSA
measurements in SIDIS as a golden program to study TMDs in both the sea and
valence quark regions and to study the role of gluons, with the Sivers
asymmetry measurements as examples. Such measurements will lead to major
advancement in our understanding of TMDs in the valence quark region, and more
importantly also allow for the investigation of TMDs in the sea quark region
along with a study of their evolution.Comment: 44 pages 23 figures, summary of Duke EIC workshop on TMDs accepted by
  EPJ
Gluons and the quark sea at high energies: distributions, polarization, tomography
This report is based on a ten-week program on "Gluons and the quark sea at
high-energies", which took place at the Institute for Nuclear Theory in Seattle
in Fall 2010. The principal aim of the program was to develop and sharpen the
science case for an Electron-Ion Collider (EIC), a facility that will be able
to collide electrons and positrons with polarized protons and with light to
heavy nuclei at high energies, offering unprecedented possibilities for
in-depth studies of quantum chromodynamics. This report is organized around
four major themes: i) the spin and flavor structure of the proton, ii)
three-dimensional structure of nucleons and nuclei in momentum and
configuration space, iii) QCD matter in nuclei, and iv) Electroweak physics and
the search for physics beyond the Standard Model. Beginning with an executive
summary, the report contains tables of key measurements, chapter overviews for
each of the major scientific themes, and detailed individual contributions on
various aspects of the scientific opportunities presented by an EIC.Comment: 547 pages, A report on the joint BNL/INT/Jlab program on the science
  case for an Electron-Ion Collider, September 13 to November 19, 2010,
  Institute for Nuclear Theory, Seattle; v2 with minor changes, matches printed
  versio
