In this paper we present a new derivation of the QCD factorization. We deduce
the k_T- and collinear factorizations for the DIS structure functions by
consecutive reductions of a more general theoretical construction. We begin by
studying the amplitude of the forward Compton scattering off a hadron target,
representing this amplitude as a set of convolutions of two blobs connected by
the simplest, two-parton intermediate states. Each blob in the convolutions can
contain both the perturbative and non-perturbative contributions. We formulate
conditions for separating the perturbative and non-perturbative contributions
and attributing them to the different blobs. After that the convolutions
correspond to the QCD factorization. Then we reduce this totally unintegrated
(basic) factorization first to the k_T- factorization and finally to the
collinear factorization. In order to yield a finite expression for the Compton
amplitude, the integration over the loop momentum in the basic factorization
must be free of both ultraviolet and infrared singularities. This obvious
mathematical requirement leads to theoretical restrictions on the
non-perturbative contributions (parton distributions) to the Compton amplitude
and the DIS structure functions related to the Compton amplitude through the
Optical theorem. In particular, our analysis excludes the use of the singular
factors x^{-a} (with a > 0) in the fits for the quark and gluon distributions
because such factors contradict to the integrability of the basic convolutions
for the Compton amplitude. This restriction is valid for all DIS structure
functions in the framework of both the k_T- factorization and the collinear
factorization if we attribute the perturbative contributions only to the upper
blob.Comment: 19 pages, 6 figure