93 research outputs found

    Fingerprints of Inelastic Transport at the Surface of the Topological Insulator Bi2Se3: Role of Electron-Phonon Coupling

    Get PDF
    We report on electric-field and temperature dependent transport measurements in exfoliated thin crystals of Bi2_{2}Se3_{3} topological insulator. At low temperatures (<50< 50 K) and when the chemical potential lies inside the bulk gap, the crystal resistivity is strongly temperature dependent, reflecting inelastic scattering due to the thermal activation of optical phonons. A linear increase of the current with voltage is obtained up to a threshold value at which current saturation takes place. We show that the activated behavior, the voltage threshold and the saturation current can all be quantitatively explained by considering a single optical phonon mode with energy Ω8\hbar \Omega \approx 8 meV. This phonon mode strongly interacts with the surface states of the material and represents the dominant source of scattering at the surface at high electric fields.Comment: Supplementary Material at: http://journals.aps.org/prl/supplemental/10.1103/PhysRevLett.112.086601/TIPhonon_SM.pd

    IN VITRO ASSESMENT OF 0.2 % ZINC-HYALURONATE ACTIVITY AGAINST MICROORGANISMS ISOLATED FROM PATIENTS WITH DIFFICULT HEALING LEG ULCERS

    Get PDF
    ABSTRACT The development of wound infection and selection of resistant microorganisms is a significant problem in the proces

    Short-Range B-site Ordering in Inverse Spinel Ferrite NiFe2O4

    Full text link
    The Raman spectra of single crystals of NiFe2O4 were studied in various scattering configurations in close comparison with the corresponding spectra of Ni0.7Zn0.3Fe2O4 and Fe3O4. The number of experimentally observed Raman modes exceeds significantly that expected for a normal spinel structure and the polarization properties of most of the Raman lines provide evidence for a microscopic symmetry lower than that given by the Fd-3m space group. We argue that the experimental results can be explained by considering the short range 1:1 ordering of Ni2+ and Fe3+ at the B-sites of inverse spinel structure, most probably of tetragonal P4_122/P4_322 symmetry.Comment: 10 pages, 5 figures, 6 table

    Metal-to-insulator transition and magnetic ordering in CaRu_{1-x}Cu_xO_3

    Full text link
    CaRuO_3 is perovskite with an orthorhombic distortion and is believed to be close to magnetic ordering. Magnetic studies of single crystal and polycrystalline CaRu_{1-x}Cu_xO_3 (0\le x \le 15 at.%Cu) reveal that spin-glass-like transition develops for x\le 7 at.%Cu and obtained value for effective magnetic moment p_{eff}=3.55 mu_B for x=5 at.% Cu, single crystal, indicates presence of Ru^{5+}. At higher Cu concentrations more complex magnetic behaviors are observed. Electrical resistivity measured on polycrystalline samples shows metal-to-insulator transition (MIT) at 51 K for only 2 at.% Cu. Charge compensation, which is assumed to be present upon Cu^{2+/3+} substitution, induces appearance of Ru^{5+} and/or creation of oxygen vacancies in crystal structure. Since the observed changes in physical properties are completely attributable to the charge compensation, they cannot be related to behaviors of pure compound where no such mechanism is present. This study provides the criterion for "good" chemical probes for studying Ru-based perovskites.Comment: 12 pages, 7 figure

    Magnetization Reversal by Electric-Field Decoupling of Magnetic and Ferroelectric Domains Walls in Multiferroic-Based Heterostructures

    Get PDF
    We demonstrate that the magnetization of a ferromagnet in contact with an antiferromagnetic multiferroic (LuMnO3) can be speedily reversed by electric field pulsing, and the sign of the magnetic exchange bias can switch and recover isothermally. As LuMnO3 is not ferroelastic, our data conclusively show that this switching is not mediated by strain effects but is a unique electric-field driven decoupling of the ferroelectric and ferromagnetic domains walls. Their distinct dynamics are essential for the observed magnetic switching

    Raman and Infrared-Active Phonons in Hexagonal HoMnO3_3 Single Crystals: Magnetic Ordering Effects

    Full text link
    Polarized Raman scattering and infrared reflection spectra of hexagonal HoMnO3_3 single crystals in the temperature range 10-300 K are reported. Group-theoretical analysis is performed and scattering selection rules for the second order scattering processes are presented. Based on the results of lattice dynamics calculations, performed within the shell model, the observed lines in the spectra are assigned to definite lattice vibrations. The magnetic ordering of Mn ions, which occurs below TN_N=76 K, is shown to effect both Raman- and infrared-active phonons, which modulate Mn-O-Mn bonds and, consequently, Mn exchange interaction.Comment: 8 pages, 6 figure

    Supercritical water-cooled nuclear reactors: thermodynamic-cycles options

    Get PDF
    Paper presented at the 6th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, South Africa, 30 June - 2 July, 2008.Currently there are a number of Generation IV SuperCritical Water-cooled nuclear Reactor (SCWR) concepts under development worldwide. The main objectives for developing and utilizing SCWRs are: 1) Increase gross thermal efficiency of current Nuclear Power Plants (NPPs) from 33 – 35% to approximately 45 – 50%, and 2) Decrease the capital and operational costs and, in doing so, decrease electrical-energy costs (~$1000 US/kW or even less). SCW NPPs will have much higher operating parameters compared to current NPPs (i.e., pressures of about 25 MPa and outlet temperatures up to 625°C). Additionally, SCWRs will have a simplified flow circuit in which steam generators, steam dryers, steam separators, etc. will be eliminated. Furthermore, SCWRs operating at higher temperatures can facilitate an economical co-generation of hydrogen through thermo-chemical cycles (particularly, the copper-chlorine cycle) or direct high-temperature electrolysis. To decrease significantly the development costs of a SCW NPP, to increase its reliability, and to achieve similar high thermal efficiencies as the advanced fossil steam cycles it should be determined whether SCW NPPs can be designed with a steam-cycle arrangement that closely matches that of mature SuperCritical (SC) fossil power plants (including their SC turbine technology). The state-of-the-art SC steam cycles in fossil power plants are designed with a single-steam reheat and regenerative feedwater heating and reach thermal steamcycle efficiencies up to 54% (i.e., net plant efficiencies of up to 43% on a Higher Heating Value (HHV) Basis). Therefore, simplified no-reheat, single-reheat, and double-reheat cycles without heat regeneration and a singlereheat cycle with heat regeneration based on the expected steam parameters of future SCW NPPs were analyzed in terms of their thermal efficiencies. On this basis, several conceptual steam-cycle arrangements of pressure-tube SCWRs, their corresponding T–s diagrams and steam-cycle thermal efficiencies (based on constant isentropic turbine and polytropic pump efficiencies) are presented in this paper.vk201

    Market consistent valuations with financial imperfection

    Get PDF
    In this paper, we study market consistent valuations in imperfect markets. In the first part of the paper, we observe that in an imperfect market one needs to distinguish two type of market consistencies, namely types I and II. We show that while market consistency of type I holds without very strong conditions, market consistency of type II (which in the literature is known as the usual definition of market consistency) is only well defined in perfect markets. This is important since the existing literature on market consistency considers perfect markets where the two market consistencies are equivalent. In the second part of the paper, by introducing a best estimator we find strong connections between hedging and market consistency of either type. We show under very general conditions, the type I and the type II market consistent evaluators are best estimators, and establish a two-step representation for the market consistent risk evaluators. In the third part of the paper, we present several families of market consistent evaluators in imperfect markets

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.
    corecore