100 research outputs found

    The biomechanical fingerprint of hip and knee osteoarthritis patients during activities of daily living

    Get PDF
    Background: Osteoarthritis is a highly prevalent disease affecting the hip and knee joint and is characterized by load-mediated pain and decreased quality of life. Dependent on involved joint, patients present antalgic movement compensations, aiming to decrease loading on the involved joint. However, the associated alterations in mechanical loading of the ipsi- and contra-lateral lower limb joints, are less documented. Here, we documented the biomechanical fingerprint of end-stage hip and knee osteoarthritis patients in terms of ipsilateral and contralateral hip and knee loading during walking and stair ambulation. Methods: Three-dimensional motion-analysis was performed in 20 hip, 18 knee osteoarthritis patients and 12 controls during level walking and stair ambulation. Joint contact forces were calculated using a standard musculoskeletal modelling workflow in Opensim. Involved and contralateral hip and knee joint loading was compared against healthy controls using independent t-tests (p &lt; 0.05). Findings: Both hip and knee cohorts significantly decreased loading of the involved joint during gait and stair ambulation. Hip osteoarthritis patients presented no signs of ipsilateral knee nor contralateral leg overloading, during walking and stair ascending. However, knee osteoarthritis patients significantly increased loading at the ipsilateral hip, and contralateral hip and knee joints during stair ambulation compared to controls. Interpretation: The biomechanical fingerprint in knee and hip osteoarthritis patients confirmed antalgic movement strategies to unload the involved leg during gait. Only during stair ambulation in knee osteoarthritis patients, movement adaptations were confirmed that induced unbalanced intra- and inter-limb loading conditions, which are known risk factors for secondary osteoarthritis.</p

    The biomechanical fingerprint of hip and knee osteoarthritis patients during activities of daily living

    Get PDF
    Background: Osteoarthritis is a highly prevalent disease affecting the hip and knee joint and is characterized by load-mediated pain and decreased quality of life. Dependent on involved joint, patients present antalgic movement compensations, aiming to decrease loading on the involved joint. However, the associated alterations in mechanical loading of the ipsi- and contra-lateral lower limb joints, are less documented. Here, we documented the biomechanical fingerprint of end-stage hip and knee osteoarthritis patients in terms of ipsilateral and contralateral hip and knee loading during walking and stair ambulation. Methods: Three-dimensional motion-analysis was performed in 20 hip, 18 knee osteoarthritis patients and 12 controls during level walking and stair ambulation. Joint contact forces were calculated using a standard musculoskeletal modelling workflow in Opensim. Involved and contralateral hip and knee joint loading was compared against healthy controls using independent t-tests (p &lt; 0.05). Findings: Both hip and knee cohorts significantly decreased loading of the involved joint during gait and stair ambulation. Hip osteoarthritis patients presented no signs of ipsilateral knee nor contralateral leg overloading, during walking and stair ascending. However, knee osteoarthritis patients significantly increased loading at the ipsilateral hip, and contralateral hip and knee joints during stair ambulation compared to controls. Interpretation: The biomechanical fingerprint in knee and hip osteoarthritis patients confirmed antalgic movement strategies to unload the involved leg during gait. Only during stair ambulation in knee osteoarthritis patients, movement adaptations were confirmed that induced unbalanced intra- and inter-limb loading conditions, which are known risk factors for secondary osteoarthritis.</p

    Hydrography and Jack mackerel stock in the South Pacific - Final report

    Get PDF
    This study aims (i) to identify the most likely population structure hypotheses of Jack mackerel, (ii) to identify management objectives for Jack mackerel, and (iii) to evaluate sustainable management strategies to achieve these objectives. These three elements were considered through literature review, statistical and population dynamics modelling. Two different conclusions were drawn: a conclusion towards most likely population structure and a conclusion towards most likely stock structure

    MANUEL À L’USAGE DES OBSERVATEURS SCIENTIFIQUES À BORD DES CHALUTIERS PÉLAGIQUES DANS LES EAUX D’AFRIQUE OCCIDENTALE

    Get PDF
    Ce manuel a été développé dans le cadre du projet Study on improvement for the analysis and exploitation of observer reports in EU fisheries from NW African waters, Specific Contract No 12 du Framework Contract EASME/EMFF/2016/008, et consolidé par tous les institutions impliquées lors de l’« Atelier sur la normalisation des méthodes d’observateurs au bord » qui s’est tenu à Santa Cruz de Tenerife (Espagne) entre le 27 et le 31 janvier 2020

    Spawning of bluefin tuna in the black sea: historical evidence, environmental constraints and population plasticity

    Get PDF
    <div><p>The lucrative and highly migratory Atlantic bluefin tuna, <em>Thunnus thynnus</em> (Linnaeus 1758<em>;</em> Scombridae), used to be distributed widely throughout the north Atlantic Ocean, Mediterranean Sea and Black Sea. Its migrations have supported sustainable fisheries and impacted local cultures since antiquity, but its biogeographic range has contracted since the 1950s. Most recently, the species disappeared from the Black Sea in the late 1980s and has not yet recovered. Reasons for the Black Sea disappearance, and the species-wide range contraction, are unclear. However bluefin tuna formerly foraged and possibly spawned in the Black Sea. Loss of a locally-reproducing population would represent a decline in population richness, and an increase in species vulnerability to perturbations such as exploitation and environmental change. Here we identify the main genetic and phenotypic adaptations that the population must have (had) in order to reproduce successfully in the specific hydrographic (estuarine) conditions of the Black Sea. By comparing hydrographic conditions in spawning areas of the three species of bluefin tunas, and applying a mechanistic model of egg buoyancy and sinking rate, we show that reproduction in the Black Sea must have required specific adaptations of egg buoyancy, fertilisation and development for reproductive success. Such adaptations by local populations of marine fish species spawning in estuarine areas are common as is evident from a meta-analysis of egg buoyancy data from 16 species of fish. We conclude that these adaptations would have been necessary for successful local reproduction by bluefin tuna in the Black Sea, and that a locally-adapted reproducing population may have disappeared. Recovery of bluefin tuna in the Black Sea, either for spawning or foraging, will occur fastest if any remaining locally adapted individuals are allowed to survive, and by conservation and recovery of depleted Mediterranean populations which could through time re-establish local Black Sea spawning and foraging.</p> </div

    The Economics of International Differences in Educational Achievement

    Full text link
    • …
    corecore