253 research outputs found

    Regulation of endothelial-specific transgene expression by the LacI repressor protein in vivo

    No full text
    Genetically modified mice have played an important part in elucidating gene function in vivo. However, conclusions from transgenic studies may be compromised by complications arising from the site of transgene integration into the genome and, in inducible systems, the non-innocuous nature of inducer molecules. The aim of the present study was to use the vascular system to validate a technique based on the bacterial lac operon system, in which transgene expression can be repressed and de-repressed by an innocuous lactose analogue, IPTG. We have modified an endothelium specific promoter (TIE2) with synthetic LacO sequences and made transgenic mouse lines with this modified promoter driving expression of mutant forms of connexin40 and an independently translated reporter, EGFP. We show that tissue specificity of this modified promoter is retained in the vasculature of transgenic mice in spite of the presence of LacO sequences, and that transgene expression is uniform throughout the endothelium of a range of adult systemic and cerebral arteries and arterioles. Moreover, transgene expression can be consistently down-regulated by crossing the transgenic mice with mice expressing an inhibitor protein LacI(R), and in one transgenic line, transgene expression could be de-repressed rapidly by the innocuous inducer, IPTG. We conclude that the modified bacterial lac operon system can be used successfully to validate transgenic phenotypes through a simple breeding schedule with mice homozygous for the LacI(R) protein.CEH and KIM acknowledge funding support from NH&MRC Project Grant #471421

    Clouds, shadows, or twilight? Mayfly nymphs recognise the difference

    Get PDF
    1. We examined the relative changes in light intensity that initiate night-time locomotor activity changes in nymphs of the mayfly, Stenonema modestum (Heptageniidae). Tests were carried out in a laboratory stream to examine the hypothesis that nymphs increase their locomotion in response to the large and sustained reductions in relative light intensity that take place during twilight but not to short-term daytime light fluctuations or a minimum light intensity threshold. Ambient light intensity was reduced over a range of values representative of evening twilight. Light was reduced over the same range of intensities either continuously or in discrete intervals while at the same time nymph activity on unglazed tile substrata was video recorded. 2. Nymphs increased their locomotor activity during darkness in response to large, sustained relative light decreases, but not in response to short-term, interrupted periods of light decrease. Nymphs did not recognise darkness unless an adequate light stimulus, such as large and sustained relative decrease in light intensity, had taken place. 3. We show that nymphs perceive light change over time and respond only after a lengthy period of accumulation of light stimulus. The response is much lengthier than reported for other aquatic organisms and is highly adaptive to heterogeneous stream environments

    Transcriptional profiling of trait deterioration in the insect pathogenic nematode Heterorhabditis bacteriophora

    Get PDF
    Background: The success of a biological control agent depends on key traits, particularly reproductive potential, environmental tolerance, and ability to be cultured. These traits can deteriorate rapidly when the biological control agent is reared in culture. Trait deterioration under laboratory conditions has been widely documented in the entomopathogenic nematode (EPN) Heterorhabditis bacteriophora (Hb) but the specific mechanisms behind these genetic processes remain unclear. This research investigates the molecular mechanisms of trait deterioration of two experimental lines of Hb, an inbred line (L5M) and its original parental line (OHB). We generated transcriptional profiles of two experimental lines of Hb, identified the differentially expressed genes (DEGs) and validated their differential expression in the deteriorated line. Results: An expression profiling study was performed between experimental lines L5M and OHB of Hb with probes for 15,220 ESTs from the Hb transcriptome. Microarray analysis showed 1,185 DEGs comprising of 469 down- and 716 up-regulated genes in trait deteriorated nematodes. Analysis of the DEGs showed that trait deterioration involves massive changes of the transcripts encoding enzymes involved in metabolism, signal transduction, virulence and longevity. We observed a pattern of reduced expression of enzymes related to primary metabolic processes and induced secondary metabolism. Expression of sixteen DEGs in trait deteriorated nematodes was validated by quantitative reverse transcription-PCR (qRT-PCR) which revealed similar expression kinetics for all the genes tested as shown by microarray. Conclusion: As the most closely related major entomopathogen to C. elegans, Hb provides an attractive near-term application for using a model organism to better understand interspecies interactions and to enhance our understanding of the mechanisms underlying trait deterioration in biological control agents. This information could also be used to improve the beneficial traits of biological control agents and better understand fundamental aspects of nematode parasitism and mutualism

    Probiotic treatment reduces appetite and glucose level in the zebrafish model.

    Get PDF
    The gut microbiota regulates metabolic pathways that modulate the physiological state of hunger or satiety. Nutrients in the gut stimulate the release of several appetite modulators acting at central and peripheral levels to mediate appetite and glucose metabolism. After an eight-day exposure of zebrafish larvae to probiotic Lactobacillus rhamnosus, high-throughput sequence analysis evidenced the ability of the probiotic to modulate the microbial composition of the gastrointestinal tract. These changes were associated with a down-regulation and up-regulation of larval orexigenic and anorexigenic genes, respectively, an up-regulation of genes related to glucose level reduction and concomitantly reduced appetite and body glucose level. BODIPY-FL-pentanoic-acid staining revealed higher short chain fatty acids levels in the intestine of treated larvae. These results underline the capability of the probiotic to modulate the gut microbiota community and provides insight into how the probiotic interacts to regulate a novel gene network involved in glucose metabolism and appetite control, suggesting a possible role for L. rhamnosus in the treatment of impaired glucose tolerance and food intake disorders by gut microbiota manipulation

    Effects of lifestyle intervention in persons at risk for type 2 diabetes mellitus - results from a randomised, controlled trial

    Get PDF
    Background: Lifestyle change is probably the most important single action to prevent type 2 diabetes mellitus. The purpose of this study was to assess the effects of a low-intensity individual lifestyle intervention by a physician and compare this to the same physician intervention combined with an interdisciplinary, group-based approach in a real-life setting. Methods: The “Finnish Diabetes Risk score” (FINDRISC) was used by GPs to identify individuals at high risk. A randomised, controlled design and an 18 month follow-up was used to assess the effect of individual lifestyle counselling by a physician (individual physician group, (IG)) every six months, with emphasis on diet and exercise, and compare this to the same individual lifestyle counselling combined with a group-based interdisciplinary program (individual and interdisciplinary group, (IIG)) provided over 16 weeks. Primary outcomes were changes in lifestyle indicated by weight reduction ≥ 5%, improvement in exercise capacity as assessed by VO2 max and diet improvements according to the Smart Diet Score (SDS). Results: 213 participants (104 in the IG and 109 in the IIG group, 50% women), with a mean age of 46 and mean body mass index 37, were included (inclusion rate > 91%) of whom 182 returned at follow-up (drop-out rate 15%). There were no significant differences in changes in lifestyle behaviours between the two groups. At baseline 57% (IG) and 53% (IIG) of participants had poor aerobic capacity and after intervention 35% and 33%, respectively, improved their aerobic capacity at least one metabolic equivalent. Unhealthy diets according to SDS were common in both groups at baseline, 61% (IG) and 60% (IIG), but uncommon at follow-up, 17% and 10%, respectively. At least 5% weight loss was achieved by 35% (IG) and 28% (IIG). In the combined IG and IIG group, at least one primary outcome was achieved by 93% while all primary outcomes were achieved by 6%. Most successful was the 78% reduction in the proportion of participants with unhealthy diet (almost 50% absolute reduction). Conclusion: It is possible to achieve important lifestyle changes in persons at risk for type 2 diabetes with modest clinical efforts. Group intervention yields no additional effects. The design of the study, with high inclusion and low dropout rates, should make the results applicable to ordinary clinical settings
    corecore