1,270 research outputs found

    Bounds for the time to failure of hierarchical systems of fracture

    Full text link
    For years limited Monte Carlo simulations have led to the suspicion that the time to failure of hierarchically organized load-transfer models of fracture is non-zero for sets of infinite size. This fact could have a profound significance in engineering practice and also in geophysics. Here, we develop an exact algebraic iterative method to compute the successive time intervals for individual breaking in systems of height nn in terms of the information calculated in the previous height n−1n-1. As a byproduct of this method, rigorous lower and higher bounds for the time to failure of very large systems are easily obtained. The asymptotic behavior of the resulting lower bound leads to the evidence that the above mentioned suspicion is actually true.Comment: Final version. To appear in Phys. Rev. E, Feb 199

    What is the best way of delivering virtual nature for improving mood?: An experimental comparison of high definition TV, 360º video, and computer generated virtual reality

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this record. Exposure to ‘real’ nature can increase positive affect and decrease negative affect, but direct access is not always possible, e.g. for people in health/care settings who often experience chronic boredom. In these settings ‘virtual’ forms of nature may also have mood-related benefits (e.g. reducing boredom) but it has been difficult to separate effects of nature content from those of delivery mode. The present laboratory-based study explored whether exposure to three different delivery modes of virtual nature could reduce negative affect (including boredom) and/or increase positive affect. Adult volunteer participants (n = 96) took part in a boredom induction task (to simulate the emotional state of many people in health/care settings) before being randomly assigned to view/ interact with a virtual underwater coral reef in one of three experimental conditions: (a) 2D video viewed on a high-definition TV screen; (b) 3600 video VR (360-VR) viewed via a head mounted display (HMD); or (c) interactive computer-generated VR (CG-VR), also viewed via a HMD and interacted with using a hand-held controller. Visual and auditory content was closely matched across conditions with help from the BBC’s Blue Planet II series team. Supporting predictions, virtual exposure to a coral reef reduced boredom and negative affect and increased positive affect and nature connectedness. Although reductions in boredom and negative affect were similar across all three conditions, CG-VR was associated with significantly greater improvements in positive affect than TV, which were mediated by greater experienced presence and increases in nature connectedness. Results improve our understanding of the importance of virtual nature delivery mode and will inform studies in real care settings.EU Horizon 202

    Probabilistic Approach to Time-Dependent Load-Transfer Models of Fracture

    Full text link
    A probabilistic method for solving time-dependent load-transfer models of fracture is developed. It is applicable to any rule of load redistribution, i.e, local, hierarchical, etc. In the new method, the fluctuations are generated during the breaking process (annealed randomness) while in the usual method, the random lifetimes are fixed at the beginning (quenched disorder). Both approaches are equivalent.Comment: 13 pages, 4 figures. To appear in Phys.Rev.

    Population Synthesis in the Blue IV: Accurate Model Predictions for Lick Indices and UBV Colors in Single Stellar Populations

    Get PDF
    [Abridged] We present new model predictions for 16 Lick absorption line indices from Hdelta through Fe5335, and UBV colors for single stellar populations (SPs) with ages ranging between 1 and 15 Gyr, [Fe/H] ranging from -1.3 to +0.3, and variable abundance ratios. We develop a method to estimate mean ages and abundances of Fe, C, N, Mg, and Ca that explores the sensitivity of the various indices to those parameters. When applied to high-S/N Galactic cluster data, the models match the clusters' elemental abundances and ages with high precision. Analyzing stacked SDSS spectra of early-type galaxies brighter than Lstar, we find mean luminosity-weighted ages of the order of ~ 8 Gyr and iron abundances slightly below solar. Abundance ratios, [X/Fe], are higher than solar, and correlate positively with galaxy luminosity. Nitrogen is the element whose abundance correlates the most strongly with luminosity, which seems to indicate secondary enrichment. This result may impose a lower limit of 50-200 Myr to the time-scale of star formation in early-type galaxies. Unlike in the case of clusters, in galaxies bluer Balmer lines yield younger ages than Hbeta. This age discrepancy is stronger for lower luminosity galaxies. We examine four scenarios to explain this trend. The most likely is the presence of small amounts of a young/intermediate-age SP component. Two-component models provide a better match to the data when the mass fraction of the young component is a few %. This result implies that star formation has been extended in early-type galaxies, and more so in less massive galaxies, lending support to the ``downsizing'' scenario. It also implies that SP synthesis models are capable of constraining not only the mean ages of SPs in galaxies, but also their age spread.Comment: To appear in the Astrophysical Journal Supplement Series. 55 Pages, using emulateapj5.sty. Full version, containing all (enlarged) figures can be found at http://www.astro.virginia.edu/~rps7v/Models/ms.pdf . A number of useful tables in the Appendix can be obtained in advance of publication by request to the autho

    Abundance analysis of two late A-type stars HD 32115 and HD 37594

    Full text link
    We have performed abundance analysis of two slowly rotating, late A-type stars, HD 32115 (HR 1613) and HD 37594 (HR 1940), based on obtained echelle spectra covering the spectral range 4000-9850 AAngstrom. These spectra allowed us to identify an extensive line list for 31 chemical elements, the most complete to date for A-type stars. Two approaches to abundance analysis were used, namely a ``manual'' (interactive) and a semi-automatic procedure for comparison of synthetic and observed spectra and equivalent widths. For some elements non-LTE (NLTE) calculations were carried out and the corresponding corrections have been applied. The abundance pattern of HD 32115 was found to be very close to the solar abundance pattern, and thus may be used as an abundance standard for chemical composition studies in middle and late A stars. Further, its H-alpha line profile shows no core-to-wing anomaly like that found for cool Ap stars and therefore also may be used as a standard in comparative studies of the atmospheric structures of cool, slowly rotating Ap stars. HD 37594 shows a metal deficiency at the level of -0.3 dex for most elements and triangle-like cores of spectral lines. This star most probably belongs to the Delta Scuti group.Comment: 10 pages, 4 figure

    Impact of fertiliser, water table, and warming on celery yield and CO2 and CH4 emissions from fenland agricultural peat

    Get PDF
    Peatlands are globally important areas for carbon preservation; although covering only 3% of global land area, they store 30% of total soil carbon. Lowland peat soils can also be very productive for agriculture, but their cultivation requires drainage as most crops are intolerant of root-zone anoxia. This leads to the creation of oxic conditions in which organic matter becomes vulnerable to mineralisation. Given the demand for high quality agricultural land, 40% of the UK's peatlands have been drained for agricultural use. In this study we present the outcomes of a controlled environment experiment conducted on agricultural fen peat to examine possible trade-offs between celery growth (an economically important crop on the agricultural peatlands of eastern England) and emissions of greenhouse gases (carbon dioxide (CO2) and methane (CH4)) at different temperatures (ambient and ambient +5 °C), water table levels (−30 cm, and −50 cm below the surface), and fertiliser use. Raising the water table from −50 cm to −30 cm depressed yields of celery, and at the same time decreased the entire ecosystem CO2 loss by 31%. A 5 °C temperature increase enhanced ecosystem emissions of CO2 by 25% and increased celery dry shoot weight by 23% while not affecting the shoot fresh weight. Fertiliser addition increased both celery yields and soil respiration by 22%. Methane emissions were generally very low and not significantly different from zero. Our results suggest that increasing the water table can lower emissions of greenhouse gases and reduce the rate of peat wastage, but reduces the productivity of celery. If possible, the water table should be raised to −30 cm before and after cultivation, and only decreased during the growing season, as this would reduce the overall greenhouse gas emissions and peat loss, potentially not affecting the production of vegetable crops

    Line-profile tomography of exoplanet transits -- II. A gas-giant planet transiting a rapidly-rotating A5 star

    Full text link
    Most of our knowledge of extrasolar planets rests on precise radial-velocity measurements, either for direct detection or for confirmation of the planetary origin of photometric transit signals. This has limited our exploration of the parameter space of exoplanet hosts to solar- and later-type, sharp-lined stars. Here we extend the realm of stars with known planetary companions to include hot, fast-rotating stars. Planet-like transits have previously been reported in the lightcurve obtained by the SuperWASP survey of the A5 star HD15082 (WASP-33; V=8.3, v sin i = 86 km/sec). Here we report further photometry and time-series spectroscopy through three separate transits, which we use to confirm the existence of a gas giant planet with an orbital period of 1.22d in orbit around HD15082. From the photometry and the properties of the planet signal travelling through the spectral line profiles during the transit we directly derive the size of the planet, the inclination and obliquity of its orbital plane, and its retrograde orbital motion relative to the spin of the star. This kind of analysis opens the way to studying the formation of planets around a whole new class of young, early-type stars, hence under different physical conditions and generally in an earlier stage of formation than in sharp-lined late-type stars. The reflex orbital motion of the star caused by the transiting planet is small, yielding an upper mass limit of 4.1 Jupiter masses on the planet. We also find evidence of a third body of sub-stellar mass in the system, which may explain the unusual orbit of the transiting planet. In HD 15082, the stellar line profiles also show evidence of non-radial pulsations, clearly distinct from the planetary transit signal. This raises the intriguing possibility that tides raised by the close-in planet may excite or amplify the pulsations in such stars.Comment: 9 pages, 6 figures, accepted for publication in MNRA

    Minimizing follow-up for space-based transit surveys using full lightcurve analysis

    Full text link
    One of the biggest challenges facing large transit surveys is the elimination of false-positives from the vast number of transit candidates. We investigate to what extent information from the lightcurves can identify blend scenarios and eliminate them as planet candidates, to significantly decrease the amount of follow-up observing time required to identify the true exoplanet systems. If a lightcurve has a sufficiently high signal-to-noise ratio, a distinction can be made between the lightcurve of a stellar binary blended with a third star and the lightcurve of a transiting exoplanet system. We perform simulations to determine what signal-to-noise level is required to make the distinction between blended and non-blended systems as function of transit depth and impact parameter. Subsequently we test our method on real data from the first IRa01 field observed by the CoRoT satellite, concentrating on the 51 candidates already identified by the CoRoT team. About 70% of the planet candidates in the CoRoT IRa01 field are best fit with an impact parameter of b>0.85, while less than 15% are expected in this range considering random orbital inclinations. By applying a cut at b<0.85, meaning that ~15% of the potential planet population would be missed, the candidate sample decreases from 41 to 11. The lightcurves of 6 of those are best fit with such low host star densities that the planet-to-star size ratii imply unrealistic planet radii of R>2RJup. Two of the five remaining systems, CoRoT1b and CoRoT4b, have been identified as planets by the CoRoT team, for which the lightcurves alone rule out blended light at 14% (2sigma) and 31% (2sigma). We propose to use this method on the Kepler database to study the fraction of real planets and to potentially increase the efficiency of follow-up.Comment: 13 pages, 11 figures, 2 tables. Accepted for publication in A&

    The first WASP public data release

    Get PDF
    The WASP (wide angle search for planets) project is an exoplanet transit survey that has been automatically taking wide field images since 2004. Two instruments, one in La Palma and the other in South Africa, continually monitor the night sky, building up light curves of millions of unique objects. These light curves are used to search for the characteristics of exoplanetary transits. This first public data release (DR1) of the WASP archive makes available all the light curve data and images from 2004 up to 2008 in both the Northern and Southern hemispheres. A web interface () to the data allows easy access over the Internet. The data set contains 3 631 972 raw images and 17 970 937 light curves. In total the light curves have 119 930 299 362 data points available between them
    • …
    corecore