287 research outputs found

    Radon Emanation Techniques and Measurements for LZ

    Full text link
    Radon emanation was projected to account for >50>50% of the electron recoil background in the WIMP region of interest for the LUX-ZEPLIN (LZ) experiment. To mitigate the amount of radon inside the detector volume, materials with inherently low radioactivity content were selected for LZ construction through an extensive screening campaign. The SD Mines radon emanation system was one of four emanation facilities utilized to screen materials during construction of LZ. SD Mines also employed a portable radon collection system for equipment too large or delicate to move to a radon emanation facility. This portable system was used to assay the Inner Cryostat Vessel in-situ at various stages of detector construction, resulting in the inference that the titanium cryostat is the source of significant radon emanation. Assays of a 228^{228}Th source confirmed that its 222^{222}Rn emanation is low enough for it to be used, and that 14% of the 220^{220}Rn emanates from the source at room temperature.Comment: 6 pages, 4 figures, submitted to LRT 2022 Conference Proceeding

    Dust emission from the Perseus molecular cloud

    Get PDF
    Using far-infrared emission maps taken by IRAS and Spitzer and a near-infrared extinction map derived from 2MASS data, we have made dust temperature and column density maps of the Perseus molecular cloud. We show that the emission from transiently heated very small grains (VSGs) and the big grain dust emissivity vary as a function of extinction and dust temperature, with higher dust emissivities for colder grains. This variable emissivity cannot be explained by temperature gradients along the line of sight or by noise in the emission maps, but it is consistent with grain growth in the higher density and lower temperature regions. By accounting for the variations in the dust emissivity and VSG emission, we are able to map the temperature and column density of a nearby molecular cloud with better accuracy than has previously been possible

    TMC-1C: an accreting starless core

    Get PDF
    We have mapped the starless core TMC-1C in a variety of molecular lines with the IRAM 30m telescope. High density tracers show clear signs of self-absorption and sub-sonic infall asymmetries are present in N2H+ (1-0) and DCO+ (2-1) lines. The inward velocity profile in N2H+ (1-0) is extended over a region of about 7,000 AU in radius around the dust continuum peak, which is the most extended ``infalling'' region observed in a starless core with this tracer. The kinetic temperature (~12 K) measured from C17O and C18O suggests that their emission comes from a shell outside the colder interior traced by the mm continuum dust. The C18O (2-1) excitation temperature drops from 12 K to ~10 K away from the center. This is consistent with a volume density drop of the gas traced by the C18O lines, from ~4x10^4 cm^-3 towards the dust peak to ~6x10^3 cm^-3 at a projected distance from the dust peak of 80" (or 11,000 AU). The column density implied by the gas and dust show similar N2H+ and CO depletion factors (f_D < 6). This can be explained with a simple scenario in which: (i) the TMC-1C core is embedded in a relatively dense environment (H2 ~10^4 cm^-3), where CO is mostly in the gas phase and the N2H+ abundance had time to reach equilibrium values; (ii) the surrounding material (rich in CO and N2H+) is accreting onto the dense core nucleus; (iii) TMC-1C is older than 3x10^5 yr, to account for the observed abundance of N2H+ across the core (~10^-10 w.r.t. H2); and (iv) the core nucleus is either much younger (~10^4 yr) or ``undepleted'' material from the surrounding envelope has fallen towards it in the past 10,000 yr.Comment: 29 pages, including 5 tables and 15 figure

    An ALMA Search for Substructure, Fragmentation, and Hidden Protostars in Starless Cores in Chamaeleon I

    Full text link
    We present an Atacama Large Millimeter/submillimeter Array (ALMA) 106 GHz (Band 3) continuum survey of the complete population of dense cores in the Chamaeleon I molecular cloud. We detect a total of 24 continuum sources in 19 different target fields. All previously known Class 0 and Class I protostars in Chamaeleon I are detected, whereas all of the 56 starless cores in our sample are undetected. We show that the Spitzer+Herschel census of protostars in Chamaeleon I is complete, with the rate at which protostellar cores have been misclassified as starless cores calculated as <1/56, or < 2%. We use synthetic observations to show that starless cores collapsing following the turbulent fragmentation scenario are detectable by our ALMA observations when their central densities exceed ~10^8 cm^-3, with the exact density dependent on the viewing geometry. Bonnor-Ebert spheres, on the other hand, remain undetected to central densities at least as high as 10^10 cm^-3. Our starless core non-detections are used to infer that either the star formation rate is declining in Chamaeleon I and most of the starless cores are not collapsing, matching the findings of previous studies, or that the evolution of starless cores are more accurately described by models that develop less substructure than predicted by the turbulent fragmentation scenario, such as Bonnor-Ebert spheres. We outline future work necessary to distinguish between these two possibilities.Comment: Accepted by Ap

    The Formation of Low-Mass Binary Star Systems Via Turbulent Fragmentation

    Full text link
    We characterize the infall rate onto protostellar systems forming in self-gravitating radiation-hydrodynamic simulations. Using two dimensionless parameters to determine disks' susceptability to gravitational fragmentation, we infer limits on protostellar system multiplicity and the mechanism of binary formation. We show that these parameters give robust predictions even in the case of marginally resolved protostellar disks. We find that protostellar systems with radiation feedback predominately form binaries via turbulent fragmentation, not disk instability, and we predict turbulent fragmentation is the dominant channel for binary formation for low-mass stars. We clearly demonstrate that systems forming in simulations including radiative feedback have fundamentally different parameters than those in purely hydrodynamic simulations.Comment: 11 pages, 10 figures, accepted to Ap

    Deuteration as an evolutionary tracer in massive-star formation

    Full text link
    Theory predicts, and observations confirm, that the column density ratio of a molecule containing D to its counterpart containing H can be used as an evolutionary tracer in the low-mass star formation process. Since it remains unclear if the high-mass star formation process is a scaled-up version of the low-mass one, we investigated whether the relation between deuteration and evolution can be applied to the high-mass regime. With the IRAM-30m telescope, we observed rotational transitions of N2D+ and N2H+ and derived the deuterated fraction in 27 cores within massive star-forming regions understood to represent different evolutionary stages of the massive-star formation process. Results. Our results clearly indicate that the abundance of N2D+ is higher at the pre-stellar/cluster stage, then drops during the formation of the protostellar object(s) as in the low-mass regime, remaining relatively constant during the ultra-compact HII region phase. The objects with the highest fractional abundance of N2D+ are starless cores with properties very similar to typical pre-stellar cores of lower mass. The abundance of N2D+ is lower in objects with higher gas temperatures as in the low-mass case but does not seem to depend on gas turbulence. Our results indicate that the N2D+-to-N2H+ column density ratio can be used as an evolutionary indicator in both low- and high-mass star formation, and that the physical conditions influencing the abundance of deuterated species likely evolve similarly during the processes that lead to the formation of both low- and high-mass stars.Comment: Accepted by A&AL, 4 pages, 2 figures, 2 appendices (one for Tables, one for additional figures

    The properties of SCUBA cores in the Perseus molecular cloud: the bias of clump-finding algorithms

    Full text link
    We present a new analysis of the properties of star-forming cores in the Perseus molecular cloud, identified in SCUBA 850 micron data. Our goal is to determine which core properties can be robustly identified and which depend on the extraction technique. Four regions in the cloud are examined: NGC1333, IC348/HH211, L1448 and L1455. We identify clumps of dust emission using two popular automated algorithms, CLFIND and GAUSSCLUMPS, finding 85 and 122 clumps in total respectively. Some trends are true for both populations: clumps become increasingly elongated over time and are consistent with constant surface brightness objects, with an average brightness ~4 to 10 times larger than the surrounding molecular cloud; the clump mass distribution (CMD) resembles the stellar intial mass function, with a slope alpha = -2.0+/-0.1 for CLFIND and alpha = -3.15+/-0.08 for GAUSSCLUMPS, which straddle the Salpeter value. The mass at which the slope shallows (similar for both algorithms at M~6 Msun) implies a star-forming efficiency of between 10 and 20 per cent. Other trends reported elsewhere depend on the clump-finding technique: we find protostellar clumps are both smaller (for GAUSSCLUMPS) and larger (for CLFIND) than their starless counterparts; the functional form, best-fitting to the CMD, is different for the two algorithms. The GAUSSCLUMPS CMD is best-fitted with a log-normal distribution, whereas a broken power law is best for CLFIND; the reported lack of massive starless cores in previous studies can be seen in the CLFIND but not the GAUSSCLUMPS data. Our approach highlights similarities and differences between the clump populations, illustrating the caution that must be exercised when comparing results from different studies and interpreting the properties of continuum cores.Comment: 19 pages, 17 figures, accepted for publication by MNRA

    A submillimetre survey of the kinematics of the Perseus molecular cloud - III. Clump kinematics

    Full text link
    We explore the kinematics of continuum clumps in the Perseus molecular cloud, derived from C18O J=3-2 data. Two populations are examined, identified using the automated algorithms CLFIND and GAUSSCLUMPS on existing SCUBA data. The clumps have supersonic linewidths with distributions which suggest the C18O line probes a lower-density 'envelope' rather than a dense inner core. Similar linewidth distributions for protostellar and starless clumps implies protostars do not have a significant impact on their immediate environment. The proximity to an active young stellar cluster seems to affect the linewidths: those in NGC1333 are greater than elsewhere. In IC348 the proximity to the old IR cluster has little influence, with the linewidths being the smallest of all. A virial analysis suggests that the clumps are bound and close to equipartition. In particular, the starless clumps occupy the same parameter space as the protostars, suggesting they are true stellar precursors and will go on to form stars. We also search for ordered C18O velocity gradients across the face of each core, usually interpreted as rotation. We note a correlation between the directions of the identified gradients and outflows across protostars, indicating we may not have a purely rotational signature. The fitted gradients are larger than found in previous work, probably as a result of the higher resolution of our data and/or outflow contamination. These gradients, if interpreted solely in terms of rotation, suggest that rotation is not dynamically significant. Furthermore, derived specific angular momenta are smaller than observed in previous studies, centred around j~0.001 km/s pc, which indicates we have identified lower levels of rotation, or that the C18O J=3-2 line probes conditions significantly denser and/or colder than n~10^5 per cc and T~10 K.Comment: 20 pages, 20 figures, accepted for publication by MNRAS. Supplementary, on-line only material available from http://www.mrao.cam.ac.uk/~eic22/Papers/CR10b_suppmaterial.pd
    corecore