309 research outputs found

    Research on Layer Manufacturing Techniques at Fraunhofer

    Get PDF
    Within the German Fraunhofer-Gesellschaft, the Fraunhofer Alliance Rapid Prototyping unites the competences of 12 institutes in the field of solid freeform fabrication. Covered competences are virtual and computer-aided product planning methods and techniques, the development and integration of materials and processes for different industrial sectors. This paper presents actual research results on layer manufacturing within the Fraunhofer- Gesellschaft based on examples from Fraunhofer ILT »Laser Melting - Direct manufacturing of metal parts with unique properties«, Fraunhofer IFAM »ecoMold - A novel concept to produce molds for plastic injection molding and pressure die casting« and Fraunhofer IPT »Quick manufacture, repair and modification of steel molds using Controlled Metal Build Up (CMB)«.Mechanical Engineerin

    Laminate polyethylene window development for large aperture millimeter receivers

    Full text link
    New experiments that target the B-mode polarization signals in the Cosmic Microwave Background require more sensitivity, more detectors, and thus larger-aperture millimeter-wavelength telescopes, than previous experiments. These larger apertures require ever larger vacuum windows to house cryogenic optics. Scaling up conventional vacuum windows, such as those made of High Density Polyethylene (HDPE), require a corresponding increase in the thickness of the window material to handle the extra force from the atmospheric pressure. Thicker windows cause more transmission loss at ambient temperatures, increasing optical loading and decreasing sensitivity. We have developed the use of woven High Modulus Polyethylene (HMPE), a material 100 times stronger than HDPE, to manufacture stronger, thinner windows using a pressurized hot lamination process. We discuss the development of a specialty autoclave for generating thin laminate vacuum windows and the optical and mechanical characterization of full scale science grade windows, with the goal of developing a new window suitable for BICEP Array cryostats and for future CMB applications

    Regulatory mechanisms controlling biogenesis of ubiquitin and the proteasome

    Get PDF
    Analysis of several Saccharomyces cerevisiae ump mutants with defects in ubiquitin (Ub)-mediated proteolysis yielded insights into the regulation of the polyubiquitin gene UB14 and of proteasome genes. High-molecular weight Ub-protein conjugates accumulated in ump mutants with impaired proteasome function with a concomitant decrease in the amount of free Ub. In these mutants, transcriptional induction of UB14 was depending in part on the transcription factor Rpn4. Deletion of UB14 partially suppressed the growth defects of ump1 mutants, indicating that accumulation of polyubiquitylated proteins is deleterious to cell growth. Transcription of proteasome subunit genes was induced in ump mutants affecting the proteasome, as well as under conditions that mediate DNA damage or the formation of abnormal proteins. This induction required the transcriptional activator Rpn4. Elevated Rpn4 levels in proteasome-deficient mutants or as a response to abnormal proteins were due to increased metabolic stability. Up-regulation of proteasome genes in response to DNA damage, in contrast, is shown to operate via induction of RPN4 transcription. (C) 2004 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.info:eu-repo/semantics/publishedVersio

    Cell Response and Tissue Scaffold Triggers Investigated by Scanning Probe Recognition Microscopy

    Get PDF
    ABSTRACT Recent efforts in the field of regenerative medicine have focused on the fabrication of scaffolds capable of promoting a repertoire of cellular responses. These scaffolds are designed to be mimetic in structure and function to the extracellular matrix/basement membrane, which serves as the physiological support for cells within tissues. Understanding the nature of the physical interactions of cells within these biomimetic structures and deriving information that would correlate geometric properties of the scaffolds with the promotion of specific cellular responses would have a major impact on their design and utility. In this paper, we introduce the use of a new and powerful form of atomic force microscopy developed by our group, termed Scanning Probe Recognition Microscopy (SPRM). SPRM is used to examine the physical interactions of protrusions emanating from NIH 3T3 fibroblasts with the surfaces of both 2D planar and 3D nanofibrillar cell culture surfaces. This technique provides the means to maintain focus on user defined regions of contact (in the nanometer range) between the cell protrusions and the 2D and 3D surfaces. Differences in the number and shape of contact regions between the cell protrusions and the two types of surface were observed using SPRM. These observations were supported by similar imaging results obtained, albeit at significantly lower resolution, using phase contrast and bright field microscopy

    Jasmonic Acid-Induced Changes in Brassica oleracea Affect Oviposition Preference of Two Specialist Herbivores

    Get PDF
    Jasmonic acid (JA) is a key hormone involved in plant defense responses. The effect of JA treatment of cabbage plants on their acceptability for oviposition by two species of cabbage white butterflies, Pieris rapae and P. brassicae, was investigated. Both butterfly species laid fewer eggs on leaves of JA-treated plants compared to control plants. We show that this is due to processes in the plant after JA treatment rather than an effect of JA itself. The oviposition preference for control plants is adaptive, as development time from larval hatch until pupation of P. rapae caterpillars was longer on JA-treated plants. Total glucosinolate content in leaf surface extracts was similar for control and treated plants; however, two of the five glucosinolates were present in lower amounts in leaf surface extracts of JA-treated plants. When the butterflies were offered a choice between the purified glucosinolate fraction isolated from leaf surface extracts of JA-treated plants and that from control plants, they did not discriminate. Changes in leaf surface glucosinolate profile, therefore, do not seem to explain the change in oviposition preference of the butterflies after JA treatment, suggesting that as yet unknown infochemicals are involved

    Role of TNFα in pulmonary pathophysiology

    Get PDF
    Tumor necrosis factor alpha (TNFα) is the most widely studied pleiotropic cytokine of the TNF superfamily. In pathophysiological conditions, generation of TNFα at high levels leads to the development of inflammatory responses that are hallmarks of many diseases. Of the various pulmonary diseases, TNFα is implicated in asthma, chronic bronchitis (CB), chronic obstructive pulmonary disease (COPD), acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). In addition to its underlying role in the inflammatory events, there is increasing evidence for involvement of TNFα in the cytotoxicity. Thus, pharmacological agents that can either suppress the production of TNFα or block its biological actions may have potential therapeutic value against a wide variety of diseases. Despite some immunological side effects, anti-TNFα therapeutic strategies represent an important breakthrough in the treatment of inflammatory diseases and may have a role in pulmonary diseases characterized by inflammation and cell death

    Conceptual Frameworks and Methods for Advancing Invasion Ecology

    Get PDF
    Invasion ecology has much advanced since its early beginnings. Nevertheless, explanation, prediction, and management of biological invasions remain difficult. We argue that progress in invasion research can be accelerated by, first, pointing out difficulties this field is currently facing and, second, looking for measures to overcome them. We see basic and applied research in invasion ecology confronted with difficulties arising from (A) societal issues, e.g., disparate perceptions of invasive species; (B) the peculiarity of the invasion process, e.g., its complexity and context dependency; and (C) the scientific methodology, e.g., imprecise hypotheses. To overcome these difficulties, we propose three key measures: (1) a checklist for definitions to encourage explicit definitions; (2) implementation of a hierarchy of hypotheses (HoH), where general hypotheses branch into specific and precisely testable hypotheses; and (3) platforms for improved communication. These measures may significantly increase conceptual clarity and enhance communication, thus advancing invasion ecology

    Mutant KRAS promotes malignant pleural effusion formation

    Get PDF
    Malignant pleural effusion (MPE) is the lethal consequence of various human cancers metastatic to the pleural cavity. However, the mechanisms responsible for the development of MPE are still obscure. Here we show that mutant KRAS is important for MPE induction in mice. Pleural disseminated, mutant KRAS bearing tumour cells upregulate and systemically release chemokine ligand 2 (CCL2) into the bloodstream to mobilize myeloid cells from the host bone marrow to the pleural space via the spleen. These cells promote MPE formation, as indicated by splenectomy and splenocyte restoration experiments. In addition, KRAS mutations are frequently detected in human MPE and cell lines isolated thereof, but are often lost during automated analyses, as indicated by manual versus automated examination of Sanger sequencing traces. Finally, the novel KRAS inhibitor deltarasin and a monoclonal antibody directed against CCL2 are equally effective against an experimental mouse model of MPE, a result that holds promise for future efficient therapies against the human condition

    Regulation of proteasome assembly and activity in health and disease

    Get PDF
    corecore