112 research outputs found

    Pleomorphic adenocarcinoma of the lacrimal gland with multiple intracranial and spinal metastases

    Get PDF
    BACKGROUND: Pleomorphic adenoma of the lacrimal gland is known to undergo malignant transformation when incompletely excised. Even if such a malignant change occurs, intracranial direct invasion and leptomeningeal seeding are seldom encountered. CASE PRESENTATION: A 50-year-old woman presented with malignant transformation associated with both intracranial invasion and multiple intracranial and spinal disseminations in the third recurrence of pleomorphic adenoma of the lacrimal gland, 6 years after initial treatment. MRI demonstrated increased extent of orbital mass, extending to the cavernous sinus. The patient underwent intensity-modulated radiation therapy (IMRT) and Gamma Knife radiosurgery. Follow-up MRI showed multiple leptomeningeal disseminations to the intracranium and spine. CONCLUSION: It is important to recognize that leptomeningeal intracranial and spinal disseminations of pleomorphic adenocarcinoma can occur, although it is extremely rare. To our knowledge, we report the first case of pleomorphic adenocarcinoma of the lacrimal gland presumably metastasizing to the intracranium and spine

    Craniofacial surgery for nonmelanoma skin malignancy: Report of an international collaborative study

    Get PDF
    AbstractBackground.This study examined the efficacy of craniofacial surgery (CFS) in treating locally advanced nonmelanoma skin cancer (NMSC).Methods.One hundred twenty patients who underwent CFS for NMSC were identified from 17 participating institutions. Patient, tumor, and treatment information was analyzed for prognostic impact on survival.Results.Surgical margins were negative in 74%, close in 3%, and involved in 23% of patients. Complications occurred in 35% of patients, half of which were local wound problems. Operative mortality was 4%. Median follow‐up interval after CFS was 27 months. The 5‐year overall survival (OS), disease‐specific survival (DSS), and recurrence‐free survival (RFS) rates were 64%, 75%, and 60%, respectively. Squamous cell histology, brain invasion, and positive resection margins independently predicted worse OS, DSS, and RFS.Conclusion.CFS is an effective treatment for patients with NMSC invading the skull base. Histology, extent of disease, and resection margins are the most significant predictors of outcome. © 2007 Wiley Periodicals, Inc. Head Neck, 200

    The role of morphine in regulation of cancer cell growth

    Get PDF
    Morphine is considered the “gold standard” for relieving pain and is currently one of the most effective drugs available clinically for the management of severe pain associated with cancer. In addition to its use in the treatment of pain, morphine appears to be important in the regulation of neoplastic tissue. Although morphine acts directly on the central nervous system to relieve pain, its activities on peripheral tissues are responsible for many of the secondary complications. Therefore, understanding the impact, other than pain control, of morphine on cancer treatment is extremely important. The effect of morphine on tumor growth is still contradictory, as both growth-promoting and growth-inhibiting effects have been observed. Accumulating evidence suggests that morphine can affect proliferation and migration of tumor cells as well as angiogenesis. Various signaling pathways have been suggested to be involved in these extra-analgesic effects of morphine. Suppression of immune system by morphine is an additional complication. This review provides an update on the influence of morphine on the growth and migration potential of tumor cells

    Scientific merits and analytical challenges of tree-ring densitometry

    Get PDF
    R.W. was supported by NERC grant NE/K003097/1.X-ray microdensitometry on annually-resolved tree-ring samples has gained an exceptional position in last-millennium paleoclimatology through the maximum latewood density parameter (MXD), but also increasingly through other density parameters. For fifty years, X-ray based measurement techniques have been the de facto standard. However, studies report offsets in the mean levels for MXD measurements derived from different laboratories, indicating challenges of accuracy and precision. Moreover, reflected visible light-based techniques are becoming increasingly popular and wood anatomical techniques are emerging as a potentially powerful pathway to extract density information at the highest resolution. Here we review the current understanding and merits of wood density for tree-ring research, associated microdensitometric techniques, and analytical measurement challenges. The review is further complemented with a careful comparison of new measurements derived at 17 laboratories, using several different techniques. The new experiment allowed us to corroborate and refresh ?long-standing wisdom?, but also provide new insights. Key outcomes include; i) a demonstration of the need for mass/volume based re-calibration to accurately estimate average ring density; ii) a substantiation of systematic differences in MXD measurements that cautions for great care when combining density datasets for climate reconstructions; and iii) insights into the relevance of analytical measurement resolution in signals derived from tree-ring density data. Finally, we provide recommendations expected to facilitate future inter-comparability and interpretations for global change research.Publisher PDFPeer reviewe

    Parameters for accurate genome alignment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome sequence alignments form the basis of much research. Genome alignment depends on various mundane but critical choices, such as how to mask repeats and which score parameters to use. Surprisingly, there has been no large-scale assessment of these choices using real genomic data. Moreover, rigorous procedures to control the rate of spurious alignment have not been employed.</p> <p>Results</p> <p>We have assessed 495 combinations of score parameters for alignment of animal, plant, and fungal genomes. As our gold-standard of accuracy, we used genome alignments implied by multiple alignments of proteins and of structural RNAs. We found the HOXD scoring schemes underlying alignments in the UCSC genome database to be far from optimal, and suggest better parameters. Higher values of the X-drop parameter are not always better. E-values accurately indicate the rate of spurious alignment, but only if tandem repeats are masked in a non-standard way. Finally, we show that Îł-centroid (probabilistic) alignment can find highly reliable subsets of aligned bases.</p> <p>Conclusions</p> <p>These results enable more accurate genome alignment, with reliability measures for local alignments and for individual aligned bases. This study was made possible by our new software, LAST, which can align vertebrate genomes in a few hours <url>http://last.cbrc.jp/</url>.</p

    Contemporary management of primary parapharyngeal space tumors

    Get PDF
    The parapharyngeal space is a complex anatomical area. Primary parapharyngeal tumors are rare tumors and 80% of them are benign. A variety of tumor types can develop in this location; most common are salivary gland neoplasm and neurogenic tumors. The management of these tumors has improved greatly owing to the developments in imaging techniques, surgery, and radiotherapy. Most tumors can be removed with a low rate of complications and recurrence. The transcervical approach is the most frequently used. In some cases, minimally invasive approaches may be used alone or in combination with a limited transcervical route, allowing large tumors to be removed by reducing morbidity of expanded approaches. An adequate knowledge of the anatomy and a careful surgical plan is essential to tailor management according to the patient and the tumor. The purpose of the present review was to update current aspects of knowledge related to this more challenging area of tumor occurrence.Peer reviewe

    Advanced paternal age effects in neurodevelopmental disorders?review of potential underlying mechanisms

    Get PDF
    Multiple epidemiological studies suggest a relationship between advanced paternal age (APA) at conception and adverse neurodevelopmental outcomes in offspring, particularly with regard to increased risk for autism and schizophrenia. Conclusive evidence about how age-related changes in paternal gametes, or age-independent behavioral traits affect neural development is still lacking. Recent evidence suggests that the origins of APA effects are likely to be multidimensional, involving both inherited predisposition and de novo events. Here we provide a review of the epidemiological and molecular findings to date. Focusing on the latter, we present the evidence for genetic and epigenetic mechanisms underpinning the association between late fatherhood and disorder in offspring. We also discuss the limitations of the APA literature. We propose that different hypotheses relating to the origins of the APA effects are not mutually exclusive. Instead, multiple mechanisms likely contribute, reflecting the etiological complexity of neurodevelopmental disorders

    Expert range maps of global mammal distributions harmonised to three taxonomic authorities

    Get PDF
    AimComprehensive, global information on species' occurrences is an essential biodiversity variable and central to a range of applications in ecology, evolution, biogeography and conservation. Expert range maps often represent a species' only available distributional information and play an increasing role in conservation assessments and macroecology. We provide global range maps for the native ranges of all extant mammal species harmonised to the taxonomy of the Mammal Diversity Database (MDD) mobilised from two sources, the Handbook of the Mammals of the World (HMW) and the Illustrated Checklist of the Mammals of the World (CMW).LocationGlobal.TaxonAll extant mammal species.MethodsRange maps were digitally interpreted, georeferenced, error-checked and subsequently taxonomically aligned between the HMW (6253 species), the CMW (6431 species) and the MDD taxonomies (6362 species).ResultsRange maps can be evaluated and visualised in an online map browser at Map of Life (mol.org) and accessed for individual or batch download for non-commercial use.Main conclusionExpert maps of species' global distributions are limited in their spatial detail and temporal specificity, but form a useful basis for broad-scale characterizations and model-based integration with other data. We provide georeferenced range maps for the native ranges of all extant mammal species as shapefiles, with species-level metadata and source information packaged together in geodatabase format. Across the three taxonomic sources our maps entail, there are 1784 taxonomic name differences compared to the maps currently available on the IUCN Red List website. The expert maps provided here are harmonised to the MDD taxonomic authority and linked to a community of online tools that will enable transparent future updates and version control

    Expert range maps of global mammal distributions harmonised to three taxonomic authorities

    Get PDF
    Aim: Comprehensive, global information on species' occurrences is an essential biodiversity variable and central to a range of applications in ecology, evolution, biogeography and conservation. Expert range maps often represent a species' only available distributional information and play an increasing role in conservation assessments and macroecology. We provide global range maps for the native ranges of all extant mammal species harmonised to the taxonomy of the Mammal Diversity Database (MDD) mobilised from two sources, the Handbook of the Mammals of the World (HMW) and the Illustrated Checklist of the Mammals of the World (CMW). Location: Global. Taxon: All extant mammal species. Methods: Range maps were digitally interpreted, georeferenced, error-checked and subsequently taxonomically aligned between the HMW (6253 species), the CMW (6431 species) and the MDD taxonomies (6362 species). Results: Range maps can be evaluated and visualised in an online map browser at Map of Life (mol.org) and accessed for individual or batch download for non-commercial use. Main conclusion: Expert maps of species' global distributions are limited in their spatial detail and temporal specificity, but form a useful basis for broad-scale characterizations and model-based integration with other data. We provide georeferenced range maps for the native ranges of all extant mammal species as shapefiles, with species-level metadata and source information packaged together in geodatabase format. Across the three taxonomic sources our maps entail, there are 1784 taxonomic name differences compared to the maps currently available on the IUCN Red List website. The expert maps provided here are harmonised to the MDD taxonomic authority and linked to a community of online tools that will enable transparent future updates and version control.Fil: Marsh, Charles J.. Yale University; Estados UnidosFil: Sica, Yanina. Yale University; Estados UnidosFil: Burguin, Connor. University of New Mexico; Estados UnidosFil: Dorman, Wendy A.. University of Yale; Estados UnidosFil: Anderson, Robert C.. University of Yale; Estados UnidosFil: del Toro Mijares, Isabel. University of Yale; Estados UnidosFil: Vigneron, Jessica G.. University of Yale; Estados UnidosFil: Barve, Vijay. University Of Florida. Florida Museum Of History; Estados UnidosFil: Dombrowik, Victoria L.. University of Yale; Estados UnidosFil: Duong, Michelle. University of Yale; Estados UnidosFil: Guralnick, Robert. University Of Florida. Florida Museum Of History; Estados UnidosFil: Hart, Julie A.. University of Yale; Estados UnidosFil: Maypole, J. Krish. University of Yale; Estados UnidosFil: McCall, Kira. University of Yale; Estados UnidosFil: Ranipeta, Ajay. University of Yale; Estados UnidosFil: Schuerkmann, Anna. University of Yale; Estados UnidosFil: Torselli, Michael A.. University of Yale; Estados UnidosFil: Lacher, Thomas. Texas A&M University; Estados UnidosFil: Wilson, Don E.. National Museum of Natural History; Estados UnidosFil: Abba, Agustin Manuel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Centro de Estudios ParasitolĂłgicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios ParasitolĂłgicos y de Vectores; ArgentinaFil: Aguirre, Luis F.. Universidad Mayor de San SimĂłn; BoliviaFil: Arroyo Cabrales, JoaquĂ­n. Instituto Nacional de AntropologĂ­a E Historia, Mexico; MĂ©xicoFil: AstĂșa, Diego. Universidade Federal de Pernambuco; BrasilFil: Baker, Andrew M.. Queensland University of Technology; Australia. Queensland Museum; AustraliaFil: Braulik, Gill. University of St. Andrews; Reino UnidoFil: Braun, Janet K.. Oklahoma State University; Estados UnidosFil: Brito, Jorge. Instituto Nacional de Biodiversidad; EcuadorFil: Busher, Peter E.. Boston University; Estados UnidosFil: Burneo, Santiago F.. Pontificia Universidad CatĂłlica del Ecuador; EcuadorFil: Camacho, M. Alejandra. Pontificia Universidad CatĂłlica del Ecuador; EcuadorFil: de Almeida Chiquito, Elisandra. Universidade Federal do EspĂ­rito Santo; BrasilFil: Cook, Joseph A.. University of New Mexico; Estados UnidosFil: CuĂ©llar Soto, Erika. Sultan Qaboos University; OmĂĄnFil: Davenport, Tim R. B.. Wildlife Conservation Society; TanzaniaFil: Denys, Christiane. MusĂ©um National d'Histoire Naturelle; FranciaFil: Dickman, Christopher R.. The University Of Sydney; AustraliaFil: Eldridge, Mark D. B.. Australian Museum; AustraliaFil: Fernandez Duque, Eduardo. University of Yale; Estados UnidosFil: Francis, Charles M.. Environment And Climate Change Canada; CanadĂĄFil: Frankham, Greta. Australian Museum; AustraliaFil: Freitas, Thales. Universidade Federal do Rio Grande do Sul; BrasilFil: Friend, J. Anthony. Conservation And Attractions; AustraliaFil: Giannini, Norberto Pedro. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico - TucumĂĄn. Unidad Ejecutora Lillo; ArgentinaFil: Gursky-Doyen, Sharon. Texas A&M University; Estados UnidosFil: HacklĂ€nder, Klaus. Universitat Fur Bodenkultur Wien; AustriaFil: Hawkins, Melissa. National Museum of Natural History; Estados UnidosFil: Helgen, Kristofer M.. Australian Museum; AustraliaFil: Heritage, Steven. University of Duke; Estados UnidosFil: Hinckley, Arlo. Consejo Superior de Investigaciones CientĂ­ficas. EstaciĂłn BiolĂłgica de Doñana; EspañaFil: Holden, Mary. American Museum of Natural History; Estados UnidosFil: Holekamp, Kay E.. Michigan State University; Estados UnidosFil: Humle, Tatyana. University Of Kent; Reino UnidoFil: Ibåñez Ulargui, Carlos. Consejo Superior de Investigaciones CientĂ­ficas. EstaciĂłn BiolĂłgica de Doñana; EspañaFil: Jackson, Stephen M.. Australian Museum; AustraliaFil: Janecka, Mary. University of Pittsburgh at Johnstown; Estados Unidos. University of Pittsburgh; Estados UnidosFil: Jenkins, Paula. Natural History Museum; Reino UnidoFil: Juste, Javier. Consejo Superior de Investigaciones CientĂ­ficas. EstaciĂłn BiolĂłgica de Doñana; EspañaFil: Leite, Yuri L. R.. Universidade Federal do EspĂ­rito Santo; BrasilFil: Novaes, Roberto Leonan M.. Universidade Federal do Rio de Janeiro; BrasilFil: Lim, Burton K.. Royal Ontario Museum; CanadĂĄFil: Maisels, Fiona G.. Wildlife Conservation Society; Estados UnidosFil: Mares, Michael A.. Oklahoma State University; Estados UnidosFil: Marsh, Helene. James Cook University; AustraliaFil: Mattioli, Stefano. UniversitĂ  degli Studi di Siena; ItaliaFil: Morton, F. Blake. University of Hull; Reino UnidoFil: Ojeda, Agustina Alejandra. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; ArgentinaFil: Ordóñez Garza, NictĂ©. Instituto Nacional de Biodiversidad; EcuadorFil: Pardiñas, Ulises Francisco J.. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Centro Nacional PatagĂłnico. Instituto de Diversidad y EvoluciĂłn Austral; ArgentinaFil: Pavan, Mariana. Universidade de Sao Paulo; BrasilFil: Riley, Erin P.. San Diego State University; Estados UnidosFil: Rubenstein, Daniel I.. University of Princeton; Estados UnidosFil: Ruelas, Dennisse. Museo de Historia Natural, Lima; PerĂșFil: Schai-Braun, StĂ©phanie. Universitat Fur Bodenkultur Wien; AustriaFil: Schank, Cody J.. University of Texas at Austin; Estados UnidosFil: Shenbrot, Georgy. Ben Gurion University of the Negev; IsraelFil: Solari, Sergio. Universidad de Antioquia; ColombiaFil: Superina, Mariella. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto de Medicina y BiologĂ­a Experimental de Cuyo; ArgentinaFil: Tsang, Susan. American Museum of Natural History; Estados UnidosFil: Van Cakenberghe, Victor. Universiteit Antwerp; BĂ©lgicaFil: Veron, Geraldine. UniversitĂ© Pierre et Marie Curie; FranciaFil: Wallis, Janette. Kasokwa-kityedo Forest Project; UgandaFil: Whittaker, Danielle. Michigan State University; Estados UnidosFil: Wells, Rod. Flinders University.; AustraliaFil: Wittemyer, George. State University of Colorado - Fort Collins; Estados UnidosFil: Woinarski, John. Charles Darwin University; AustraliaFil: Upham, Nathan S.. University of Yale; Estados UnidosFil: Jetz, Walter. University of Yale; Estados Unido
    • 

    corecore