749 research outputs found
Spin degree of freedom in two dimensional exciton condensates
We present a theoretical analysis of a spin-dependent multicomponent
condensate in two dimensions. The case of a condensate of resonantly
photoexcited excitons having two different spin orientations is studied in
detail. The energy and the chemical potentials of this system depend strongly
on the spin polarization . When electrons and holes are located in two
different planes, the condensate can be either totally spin polarized or spin
unpolarized, a property that is measurable. The phase diagram in terms of the
total density and electron-hole separation is discussed.Comment: 4 pages, 3 figures, Accepted for publication in Physical Review
Letter
Effects of density imbalance on the BCS-BEC crossover in semiconductor electron-hole bilayers
We study the occurrence of excitonic superfluidity in electron-hole bilayers
at zero temperature. We not only identify the crossover in the phase diagram
from the BCS limit of overlapping pairs to the BEC limit of non-overlapping
tightly-bound pairs but also, by varying the electron and hole densities
independently, we can analyze a number of phases that occur mainly in the
crossover region. With different electron and hole effective masses, the phase
diagram is asymmetric with respect to excess electron or hole densities. We
propose as the criterion for the onset of superfluidity, the jump of the
electron and hole chemical potentials when their densities cross.Comment: 4 pages, 3 figure
The VIPERS Multi-Lambda Survey. II. Diving with massive galaxies in 22 square degrees since z = 1.5
We investigate the evolution of the galaxy stellar mass function (SMF) and
stellar mass density from redshift z=0.2 to z=1.5 of a <22-selected
sample with highly reliable photometric redshifts and over an unprecedentedly
large area. Our study is based on NIR observations carried out with WIRCam at
CFHT over the footprint of the VIPERS spectroscopic survey and benefits from
the high quality optical photometry from the CFHTLS and UV observations with
the GALEX satellite. The accuracy of our photometric redshifts is <
0.03 and 0.05 for the bright (22.5) samples,
respectively. The SMF is measured with ~760,000 galaxies down to =22 and
over an effective area of ~22.4 deg, the latter of which drastically
reduces the statistical uncertainties (i.e. Poissonian error & cosmic
variance). We point out the importance of a careful control of the photometric
calibration, whose impact becomes quickly dominant when statistical
uncertainties are reduced, which will be a major issue for future generation of
cosmological surveys with, e.g. EUCLID or LSST. By exploring the rest-frame
(NUV-r) vs (r-) color-color diagram separating star-forming and quiescent
galaxies, (1) we find that the density of very massive log() >
11.5 galaxies is largely dominated by quiescent galaxies and increases by a
factor 2 from z~1 to z~0.2, which allows for additional mass assembly via dry
mergers, (2) we confirm a scenario where star formation activity is impeded
above a stellar mass log() = 10.640.01, a value that
is found to be very stable at 0.2 < z < 1.5, (3) we discuss the existence of a
main quenching channel that is followed by massive star-forming galaxies, and
finally (4) we characterise another quenching mechanism required to explain the
clear excess of low-mass quiescent galaxies observed at low redshift.Comment: 22 pages, 20 figures. Accepted for publication in A&A. Version to be
publishe
The VIPERS Multi-Lambda Survey. I. UV and NIR Observations, multi-color catalogues and photometric redshifts
We present observations collected in the CFHTLS-VIPERS region in the
ultraviolet (UV) with the GALEX satellite (far and near UV channels) and the
near infrared with the CFHT/WIRCam camera (-band) over an area of 22 and
27 deg, respectively. The depth of the photometry was optimized to measure
the physical properties (e.g., SFR, stellar masses) of all the galaxies in the
VIPERS spectroscopic survey. The large volume explored by VIPERS will enable a
unique investigation of the relationship between the galaxy properties and
their environment (density field and cosmic web) at high redshift (0.5 < z <
1.2). In this paper, we present the observations, the data reductions and the
build-up of the multi-color catalogues. The CFHTLS-T0007 (gri-{\chi}^2) images
are used as reference to detect and measure the -band photometry, while
the T0007 u-selected sources are used as priors to perform the GALEX photometry
based on a dedicated software (EMphot). Our final sample reaches ~25
(at 5{\sigma}) and ~22 (at 3{\sigma}). The large spectroscopic sample
(~51,000 spectroscopic redshifts) allows us to highlight the robustness of our
star/galaxy separation, and the reliability of our photometric redshifts with a
typical accuracy 0.04 and a catastrophic failure rate {\eta} <
2% down to i~23. We present various tests on the band completeness and
photometric redshift accuracy by comparing with existing, overlapping deep
photometric catalogues. Finally, we discuss the BzK sample of passive and
active galaxies at high redshift and the evolution of galaxy morphology in the
(NUV-r) vs (r-K_s) diagram at low redshift (z < 0.25) thanks to the high image
quality of the CFHTLS. The images, catalogues and photometric redshifts for 1.5
million sources (down to 25 or 22) are released and
available at this URL: http://cesam.lam.fr/vipers-mls/Comment: 14 pages, 16 figures. Accepted for publication in A&A. Version to be
publishe
Nonmonotonic Decay of Nonequilibrium Polariton Condensate in Direct-Gap Semiconductors
Time evolution of a nonequilibrium polariton condensate has been studied in
the framework of a microscopic approach. It has been shown that due to
polariton-polariton scattering a significant condensate depletion takes place
in a comparatively short time interval. The condensate decay occurs in the form
of multiple echo signals. Distribution-function dynamics of noncondensate
polaritons have been investigated. It has been shown that at the initial stage
of evolution the distribution function has the form of a bell. Then
oscillations arise in the contour of the distribution function, which further
transform into small chaotic ripples. The appearance of a short-wavelength wing
of the distribution function has been demonstrated. We have pointed out the
enhancement and then partial extinction of the sharp extra peak arising within
the time interval characterized by small values of polariton condensate density
and its relatively slow changes.Comment: 20 pages, LaTeX 2.09; in press in PR
IC 225: a dwarf elliptical galaxy with a peculiar blue core
We present the discovery of a peculiar blue core in the elliptical galaxy IC
225 by using images and spectrum from the Sloan Digital Sky Survey (SDSS). The
outer parts of the surface brightness profiles of u-, g-, r-, i- and z-band
SDSS images for IC 225 are well fitted with an exponential function. The
fitting results show that IC 225 follows the same relations between the
magnitude, scale length and central surface brightness for dwarf elliptical
galaxies. Its absolute blue magnitude (M_B) is -17.14 mag, all of which suggest
that IC 225 is a typical dwarf elliptical galaxy. The g-r color profile
indicates a very blue core with a radius of 2 arcseconds, which is also clearly
seen in the RGB image made of g-, r- and i-band SDSS images. The SDSS optical
spectrum exhibits strong and very narrow nebular emission lines. The metal
abundances derived by the standard methods, which are 12+log(O/H) = 8.98,
log(N/O) = -0.77 and 12+log(S+/H+) = 6.76, turn out to be significantly higher
than that predicted by the well-known luminosity-metallicity relation. After
carefully inspecting the central region of IC 225, we find that there are two
distinct nuclei, separated by 1.4 arcseconds, the off-nucleated one is even
bluer than the nucleus of IC 225. The asymmetric line profiles of higher-order
Balmer lines indicate that the emission lines are bluer shifted relative to the
absorption lines, suggesting that the line emission arises from the off-center
core, whose nature is a metal-rich Hii region. To the best of our knowledge, it
is the first high-metallicity Hii region detected in a dwarf elliptical galaxy.Comment: 7 figures, accepted for publication in A
Manifestation of exciton Bose condensation in induced two-phonon emission and Raman scattering
The unusual two-photon emission by Bose-condensed excitons caused by
simultaneous recombination of two excitons with opposite momenta leaving the
occupation numbers of excitonic states with momenta unchanged
(below coherent two-exciton recombination) is investigated. Raman scattering
accompanied by the analogous two-exciton recombination (or creation) is also
analyzed. The excess momentum equal to the change of the electromagnetic field
momentum in these processes can be transferred to phonons or impurities. The
processes under consideration take place if there is Bose condensation in the
interacting exciton system, and, therefore, can be used as a new method to
reveal exciton Bose condensation. If the frequency of the incident light
( is the frequency corresponding to the recombination
of an exciton with p=0), the coherent two-exciton recombination with the excess
momentum elastically transferred to impurities leads to the appearance of the
spectral line corresponding to the induced two-photon
emission. In this case the anti-Stokes line on frequency also
appears in the Raman spectrum. If , there are both Stokes and
anti-Stokes lines on frequencies in the Raman spectrum. The
induced two-photon emission is impossible in this case. The spectral lines
mentioned above have phonon replicas on frequencies corresponding to the transmission of the excess
momentum (partially or as a whole) to optical phonons of frequency
( is an integer number).Comment: 21 pages, 2 Postscript figures. Submitted to Phys. Rev. B (1998
Fluctuations in the Irreversible Decay of Turbulent Energy
A fluctuation law of the energy in freely-decaying, homogeneous and isotropic
turbulence is derived within standard closure hypotheses for 3D incompressible
flow. In particular, a fluctuation-dissipation relation is derived which
relates the strength of a stochastic backscatter term in the energy decay
equation to the mean of the energy dissipation rate. The theory is based on the
so-called ``effective action'' of the energy history and illustrates a
Rayleigh-Ritz method recently developed to evaluate the effective action
approximately within probability density-function (PDF) closures. These
effective actions generalize the Onsager-Machlup action of nonequilibrium
statistical mechanics to turbulent flow. They yield detailed, concrete
predictions for fluctuations, such as multi-time correlation functions of
arbitrary order, which cannot be obtained by direct PDF methods. They also
characterize the mean histories by a variational principle.Comment: 26 pages, Latex Version 2.09, plus seceq.sty, a stylefile for
sequential numbering of equations by section. This version includes new
discussion of the physical interpretation of the formal Rayleigh-Ritz
approximation. The title is also change
On the two-dimensional rotational body of maximal Newtonian resistance
We investigate, by means of computer simulations, shapes of nonconvex bodies
that maximize resistance to their motion through a rarefied medium, considering
that bodies are moving forward and at the same time slowly rotating. A
two-dimensional geometric shape that confers to the body a resistance very
close to the theoretical supremum value is obtained, improving previous
results.Comment: This is a preprint version of the paper published in J. Math. Sci.
(N. Y.), Vol. 161, no. 6, 2009, 811--819. DOI:10.1007/s10958-009-9602-
Engineering Superfluidity in Electron-Hole Double Layers
We show that band-structure effects are likely to prevent superfluidity in
semiconductor electron-hole double-layer systems. We suggest the possibility
that superfluidity could be realized by the application of uniaxial pressure
perpendicular to the electron and hole layers.Comment: 4 pages, includes 3 figure
- …
