285 research outputs found

    Resultados preliminares sobre el hábitat de alimentación de la Pardela balear en el Levante ibérico peninsular

    Get PDF
    Resultados preliminares sobre el hábitat de alimentación de la Pardela Balear en el Levante Ibérico Peninsular. Las aves marinas son susceptibles a una variedad de impactos antropogénicos, incluyendo la ingestión de plásticos, vertidos de petróleo, competencia con la pesca y la captura incidental. Conocer su distribución en el mar puede ayudar a los gestores a evaluar la susceptibilidad de diferentes especies y poblaciones a amenazas específicas. Se caracterizó la distribución en el mar de la pardela balear Puffinus mauretanicus, una especie críticamente amenazada endémica de las Islas Baleares, a lo largo de la costa mediterránea de la península Ibérica durante tres años coincidiendo con el período de crecimiento del pollo (mayo-junio). La especie habitó principalmente la plataforma continental asociándose a frentes, en los que puede llegar a concentrarse una gran abundancia de presas, en torno a las aguas delta del Ebro.Preliminary results of the foraging habitat of the Balearic Shearwater off the eastern Iberian peninsula. Seabirds are susceptible to a variety of anthropogenic impacts, including plastic ingestion, oil spills, competition with fisheries, and bycatch. Understanding their distribution at sea can help managers to assess the susceptibility of different species and populations to specific threats. We characterized the at-sea distribution of the Balearic Shearwater, Puffinus mauretanicus, a critically endangered species endemic to the Balearic Islands, along the Mediterranean coast of the Iberian Peninsula during three years coinciding with the chick-rearing period (May-June). The species mostly inhabited the productive continental shelf and associated with fronts where high prey concentrations could occur around the Ebro Delta area

    Geospatial Approaches to Support Pelagic Conservation Planning and Adaptive Management

    Get PDF
    Place-based management in the open ocean faces unique challenges in delineating boundaries around temporally and spatially dynamic systems that span broad geographic scales and multiple management jurisdictions, especially in the \u27high seas\u27. Geospatial technologies are critical for the successful design of pelagic conservation areas, because they provide information on the spatially and temporally dynamic oceanographic features responsible for driving species distribution and abundance in the open ocean, the movements of protected species, and the spatial patterns of distribution of potential threats. Nevertheless, there are major challenges to implementing these geospatial approaches in the open ocean. This Theme Section seeks to bridge the gap between geospatial science and marine conservation by discussing the use of innovative approaches to support effective marine conservation planning strategies for pelagic ecosystems. We highlight the results of this collection of contributions in 3 main sections: (1) conceptual advances in pelagic conservation; (2) novel information technologies and methodologies; and (3) case studies in the California Current and Pacific Ocean

    Incorporating information on bottlenose dolphin distribution into marine protected area design

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Aquatic Conservation: Marine and Freshwater Ecosystems 22 (2012): 122-133, doi:10.1002/aqc.1243.The steady growth of the whale-watching activities in the Azores and its concentration in a small area that partly overlaps the home range of a resident group of bottlenose dolphins (Tursiops truncatus) was one of the driving forces to proposing part of the range of this group as a Marine Protected Area (MPA). We used 6-years of data collected during boat surveys to investigate how dolphins used the candidate MPA (cMPA) and whether they showed any preference for the cMPA over adjacent areas. We also estimated the fraction of the resident individuals and group’s range included in the cMPA and examined whether there were any temporal changes in its use. Mean daily encounter rate of bottlenose dolphins was higher inside than outside the cMPA. Dolphin sightings inside the cMPA were nearly double than what was predicted by the survey effort. Dolphins used the cMPA with similar intensity throughout the years. Resident dolphins were frequently sighted in the cMPA. However, less than 20% of the known range (650 km2) and 41% (39 km2) of the core area of the group lay within the cMPA. The reliability in the use of the cMPA over a 6-year period suggests its importance for the dolphin population remained relatively stable but its surface area was clearly insufficient to satisfy the spatial requirements of the resident group. Based on these findings, we proposed to the Regional Government of the Azores to extend the boundaries of the cMPA. Accordingly, the modified protected area established in 2008 includes 100% of the core area of the resident group of bottlenose dolphins. This study provides an example of how information on cetacean habitat-use patterns may be used to design ecologically meaningful protected areas for this group.This work was also supported by FEDER funds, through the Competitiveness Factors Operational Programme – COMPETE, and by national funds, through FCT – Foundation for Science and Technology, under projects POCTI/BSE/38991/01 and PTDC/MAR/74071/2006. M.A.S. was supported by FCT doctoral (SFRH/BD/8609/2002) and postdoctoral (SFRH/BPD/29841/2006) grants. S.M.M. and M.I.S. received research grants from FCT, through project PTDC/MAR/74071/2006. IMAR- DOP/UAç is the R&D Unit #531 and part of the Associated Laboratory #9 (ISR) funded through the pluri-annual and programmatic funding schemes of FCT-MCTES and DRCT-Azores

    Seabird Trophic Position Across Three Ocean Regions Tracks Ecosystem Differences

    Get PDF
    We analyze recently collected feather tissues from two species of seabirds, the sooty tern (Onychoprion fuscatus) and brown noddy (Anous stolidus), in three ocean regions (North Atlantic, North Pacific, and South Pacific) with different human impacts. The species are similar morphologically and in the trophic levels from which they feed within each location. In contrast, we detect reliable differences in trophic position amongst the regions. Trophic position appears to decline as the intensity of commercial fishing increases, and is at its lowest in the Caribbean. The spatial gradient in trophic position we document in these regions exceeds those detected over specimens from the last 130 years in the Hawaiian Islands. Modeling suggests that climate velocity and human impacts on fish populations strongly align with these differences

    Albatrosses Following Fishing Vessels: How Badly Hooked Are They on an Easy Meal?

    Get PDF
    Fisheries have major impacts on seabirds, both by changing food availability and by causing direct mortality of birds during trawling and longline setting. However, little is known about the nature and the spatial-temporal extent of the interactions between individual birds and vessels. By studying a system in which we had fine-scale data on bird movements and activity, and near real-time information on vessel distribution, we provide new insights on the association of a threatened albatross with fisheries. During early chick-rearing, black-browed albatrosses Thalassarche melanophris from two different colonies (separated by only 75 km) showed significant differences in the degree of association with fisheries, despite being nearly equidistant to the Falklands fishing fleet. Most foraging trips from either colony did not bring tracked individuals close to vessels, and proportionally little time and foraging effort was spent near ships. Nevertheless, a few individuals repeatedly visited fishing vessels, which may indicate they specialise on fisheries-linked food sources and so are potentially more vulnerable to bycatch. The evidence suggests that this population has little reliance on fisheries discards at a critical stage of its nesting cycle, and hence measures to limit fisheries waste on the Patagonian shelf that also reduce vessel attractiveness and the risk of incidental mortality, would be of high overall conservation benefit

    Physical and biological variables affecting seabird distributions during the upwelling season of the northern California Current

    Get PDF
    Author Posting. © The Authors, 2004. This is the author's version of the work. It is posted here by permission of Elsevier B. V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 52 (2005): 123-143, doi:10.1016/j.dsr2.2004.08.016.As a part of the GLOBEC-Northeast Pacific project, we investigated variation in the abundance of marine birds in the context of biological and physical habitat conditions in the northern portion of the California Current System (CCS) during cruises during the upwelling season 2000. Continuous surveys of seabirds were conducted simultaneously in June (onset of upwelling) and August (mature phase of upwelling) with ocean properties quantified using a towed, undulating vehicle and a multi-frequency bioacoustic instrument (38-420 kHz). Twelve species of seabirds contributed 99% of the total community density and biomass. Species composition and densities were similar to those recorded elsewhere in the CCS during earlier studies of the upwelling season. At a scale of 2-4 km, physical and biological oceanographic variables explained an average of 25% of the variation in the distributions and abundance of the 12 species. The most important explanatory variables (among 14 initially included in each multiple regression model) were distance to upwelling-derived frontal features (center and edge of coastal jet, and an abrupt, inshore temperature gradient), sea-surface salinity, acoustic backscatter representing various sizes of prey (smaller seabird species were associated with smaller prey and the reverse for larger seabird species), and chlorophyll concentration. We discuss the importance of these variables in the context of what factors may be that seabirds use to find food. The high seabird density in the Heceta Bank and Cape Blanco areas indicate them to be refuges contrasting the low seabird densities currently found in most other parts of the CCS, following decline during the recent warm regime of the Pacific Decadal Oscillation.Support from National Science Foundation Grant OCE-0001035, National Oceanic and Atmospheric Administration (NOAA)/Woods Hole Oceanographic Institution-CICOR Grant NA17RJ1223 is gratefully acknowledged

    Wind, Waves, and Wing Loading: Morphological Specialization May Limit Range Expansion of Endangered Albatrosses

    Get PDF
    Among the varied adaptations for avian flight, the morphological traits allowing large-bodied albatrosses to capitalize on wind and wave energy for efficient long-distance flight are unparalleled. Consequently, the biogeographic distribution of most albatrosses is limited to the windiest oceanic regions on earth; however, exceptions exist. Species breeding in the North and Central Pacific Ocean (Phoebastria spp.) inhabit regions of lower wind speed and wave height than southern hemisphere genera, and have large intrageneric variation in body size and aerodynamic performance. Here, we test the hypothesis that regional wind and wave regimes explain observed differences in Phoebastria albatross morphology and we compare their aerodynamic performance to representatives from the other three genera of this globally distributed avian family. In the North and Central Pacific, two species (short-tailed P. albatrus and waved P. irrorata) are markedly larger, yet have the smallest breeding ranges near highly productive coastal upwelling systems. Short-tailed albatrosses, however, have 60% higher wing loading (weight per area of lift) compared to waved albatrosses. Indeed, calculated aerodynamic performance of waved albatrosses, the only tropical albatross species, is more similar to those of their smaller congeners (black-footed P. nigripes and Laysan P. immutabilis), which have relatively low wing loading and much larger foraging ranges that include central oceanic gyres of relatively low productivity. Globally, the aerodynamic performance of short-tailed and waved albatrosses are most anomalous for their body sizes, yet consistent with wind regimes within their breeding season foraging ranges. Our results are the first to integrate global wind and wave patterns with albatross aerodynamics, thereby identifying morphological specialization that may explain limited breeding ranges of two endangered albatross species. These results are further relevant to understanding past and potentially predicting future distributional limits of albatrosses globally, particularly with respect to climate change effects on basin-scale and regional wind fields

    Endangered right whales enhance primary productivity in the bay of fundy

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Marine mammals have recently been documented as important facilitators of rapid and efficient nutrient recycling in coastal and offshore waters. Whales enhance phytoplankton nutrition by releasing fecal plumes near the surface after feeding and by migrating from highly productive, high-latitude feeding areas to low-latitude nutrient-poor calving areas. In this study, we measured NH4 + and PO4 3- release rates from the feces of North Atlantic right whales (Eubalaena glacialis), a highly endangered baleen whale. Samples for this species were primarily collected by locating aggregations of whales in surface- Active groups (SAGs), which typically consist of a central female surrounded by males competing for sexual activity. When freshly collected feces were incubated in seawater, high initial rates of N release were generally observed, which decreased to near zero within 24 hours of sampling, a pattern that is consistent with the active role of gut microflora on fecal particles. We estimate that at least 10% of particulate N in whale feces becomes available as NH4 + within 24 hours of defecation. Phosphorous was also abundant in fecal samples: Initial release rates of PO4 3- were higher than for NH4 +, yielding low N/P nutrient ratios over the course of our experiments. The rate of PO4 3- release was thus more than sufficient to preclude the possibility that nitrogenous nutrients supplied by whales would lead to phytoplankton production limited by P availability. Phytoplankton growth experiments indicated that NH4 + released from whale feces enhance productivity, as would be expected, with no evidence that fecal metabolites suppress growth. Although North Atlantic right whales are currently rare (approximately 450 individuals), they once numbered about 14,000 and likely played a substantial role in recycling nutrients in areas where they gathered to feed and mate. Even though the NH4 + released from fresh whale fecal material is a small fraction of total whale fecal nitrogen, and recognizing the fact that the additional nitrogen released in whale urine would be difficult to measure in a field study, the results of this study support the idea that the distinctive isotopic signature of the released NH4 + could be used to provide a conservative estimate of the contribution of the whale pump to primary productivity in coastal regions where whales congregate
    • …
    corecore