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We analyze recently collected feather tissues from two species of seabirds, the sooty
tern (Onychoprion fuscatus) and brown noddy (Anous stolidus), in three ocean regions
(North Atlantic, North Pacific, and South Pacific) with different human impacts. The
species are similar morphologically and in the trophic levels from which they feed within
each location. In contrast, we detect reliable differences in trophic position amongst
the regions. Trophic position appears to decline as the intensity of commercial fishing
increases, and is at its lowest in the Caribbean. The spatial gradient in trophic position
we document in these regions exceeds those detected over specimens from the last
130 years in the Hawaiian Islands. Modeling suggests that climate velocity and human
impacts on fish populations strongly align with these differences.

Keywords: trophic ecology, commercial fisheries, ocean memory, global change, machine learning, stable
isotopes, food webs

INTRODUCTION

The scale and accessibility of marine ecosystems, anthropogenic impact, and industry removal
presents management and conservation challenges. Consequently, monitoring and evaluation
often rely on proxies to assess marine ecosystems. Such proxies include manually surveyed
biological indicators, remotely sensed environmental data, and state-aggregated fisheries
dependent metrics like mean trophic level (MTL) (Pauly et al., 1998; Holt and Miller, 2011;
Hunsicker et al., 2016). For these to be effective decision-making tools, identifying indicators and
metrics that accurately and independently quantify impacts is key (Link et al., 2009).

Food web status has been a widely used metric for gauging ecosystem state, especially in relation
to commercial fishery impacts (Pimm, 1982). In particular, fishery-derived MTL is repeatedly
used to gauge food web status and trends; though its interpretation has been contested (Pauly
et al., 1998). Fishery-dependent MTL assessments have inherent biases that may fail to detect
multiple ecosystem signals such as high trophic-level species loss, prey release, and market targeting
shifts (Essington et al., 2006; Estes et al., 2011). Ideal biological indicators are those sampled and
approximated from species representing broad ecosystem patterns (Lyday et al., 2015; Reed et al.,
2016). The techniques must be robust and reproducible at scale (Gagné et al., 2018). Increasingly,
metrics independent of fisheries and often involving non-target upper trophic level predators, like
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marine birds and mammals, offer promising approaches for
circumventing biases (Holt and Miller, 2011).

To assess the status of pelagic food webs, we use compound-
specific stable isotope analysis of amino acids (CSIA-AA)
to compare seabird tissues across three ocean regions. This
approach helps resolve previous questions of bias from fishery-
data based metrics and from those relying on bulk stable isotope
techniques which have come under scrutiny due to isotopic
baseline shifts affecting trophic position estimates (Nielsen et al.,
2015).

We focus on two species of colonial terns that are central
place foragers, have large foraging ranges (BRNO = 200 km,
SOTE = 800 km), and are circumtropically distributed (Hebshi
et al., 2008). CSIA-AA determines trophic position robustly
by comparing the relative enrichment of the 15N to 14N ratio
(δ15N) in trophic and source amino acids (Nielsen et al.,
2015). This approach proposes a fishery-independent metric
to document food web status amongst locations. It builds
upon our previous research, that applied this method across
a chronology of 130-years (Gagné et al., 2018) within one
region. To understand potential spatial patterns that the birds
may be detecting, we use random forest regression models to
investigate the influence of various anthropogenic and climate
factors on seabird trophic position. We reaffirm seabirds are
reliable indicators of marine systems, especially through the use
of CSIA-AA to calculate their trophic position (Lyday et al.,
2015), and in recording impacts from commercial fisheries
extraction.

MATERIALS AND METHODS

Specimen Collection and Preparation
We sampled brown noddy (Anous stolidus) and sooty tern
(Onychoprion fuscatus) feathers from three locations in three
distinct ocean basins: Rose Island, Rose Atoll National Wildlife
Refuge, American Samoa (South Pacific); Waimanalo, Oahu,
Hawaii (North Pacific); and Bush Key, Dry Tortugas National
Park, Florida (North Atlantic). From 2013–2015, we collected
senesced, fully emerged flight feathers at nesting colonies and
additional samples from dead strandings (USFWS permits
MB052060-0, MB180283-1).

Collected feathers were free from debris and other tissues,
were stored in heavyweight polyethylene bags (ULINETM, 4 mil)
with indicating silica gel desiccant (FisherTM grade 48, 4–10
mesh), and later debrided with compressed air. We homogenized
individual feathers (n = 20) and sent samples to the UC Davis
Stable Isotope Facility for CSIA-AA. Though our processed
specimen data are limited (n = 20, 6 Hawaii, 4 Florida, 10
American Samoa with an even split of species by location),
the sample size we collected is characteristic of CSIA-AA
studies of marine species (Popp et al., 2007; Chikaraishi et al.,
2009; Votier et al., 2010; O’Malley et al., 2012; Ostrom et al.,
2017; Peavey et al., 2017) and effective at describing possible
population patterns. That said, we discuss future research
directions that may improve upon the sampling and analyses
presented here.

Trophic Position Calculation
We calculated trophic position, TP, using:

TP=
(δ15NTrp−δ15NSrc−β)

TEF
+ 1

where δ15NTrp is the mean value for six trophic amino acids
(alanine, glutamic acid, isoleucine, leucine, proline, and valine),
δ15NSrc is the single source amino acid (phenylalanine), and β

(2.42) and TEF (trophic enrichment factor = 5.63) are amino
acid-specific constants (Nielsen et al., 2015), calculated using
established methods (Gagné et al., 2018). Variation of the selected
constants does not impact the relative relationships of TP
between species or location, only absolute values, and therefore
does not influence our aim of detecting differences between
regions. For each specimen, we generated 1000 random TP values
from the δ15N (normal) parameter distributions the analytical lab
provided for each amino acid (Figure 1A and Supplementary
Table S1). Due to the large (20000 estimates) sample drawn
the lab parametrized distributions, tests of difference are highly
significant (p < 0.005) with narrow confidence intervals.
Therefore, we report and discuss trophic positions effect size and
magnitude differences (Sullivan and Feinn, 2012; Greenland et al.,
2016).

Model Input Aggregation
We aggregated covariates tied to environmental and human
drivers that may describe spatial differences. As seabird prey
items vary between regions, we represented fishing pressure
for each region with catch density (catch-per-unit area, or
CPUA, measured in tons km−1) as per previous studies (Pauly,
2007; Pauly et al., 2013). This metric is calculated by dividing
the cumulative total annual catch from the Sea Around Us
reconstructed landings by the total area of the EEZ of the
location from which the feathers were sampled. We also obtained
MTL by EEZ from the SeaAroundUs database. To capture the
nature of the potentially relevant climate velocities that may
have precipitated the relevant seabird prey composition, we
calculated the 10-years change during and immediately prior to
the sampling period. We calculated this as the rate of change
in remotely sensed sea surface temperature (Supplementary
Figures S1A,B, AVHRR POES 0.1◦, 14-day composite) during
the period of 2006-2016, consistent with previous studies
(Hamann et al., 2015; Van Houtan et al., 2015).

Model Development
To explore correlative relationships, we implemented the
random forest algorithm to model trophic position as a function
of the drivers. Random forest models excel in their flexibility
to model non-linearity and complex interactions while also
maximizing generalizability, minimized overfitting tendency,
and easy interpretation (Breiman, 2001). We trained random
forest models with conservative hyper-parametrization. Hyper-
parameters were set at 500 trees, 2 variables tried at each split, a
minimum node size of 5 observations, and an out-of-bag sample
proportion of 0.4 with replacement (Breiman, 2001). We built
centered individual conditional expectation plots to highlight

Frontiers in Marine Science | www.frontiersin.org 2 September 2018 | Volume 5 | Article 317

https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-05-00317 September 27, 2018 Time: 15:18 # 3

Gagné et al. Seabirds Track Ecosystem Changes

FIGURE 1 | Trophic position of two seabirds (A) and conditional relationships with model predictors (B–G). A, whisker range is 1.5× the interquartile spread. Plot
colors correspond to labeled wing silhouettes, “SOTE” is sooty tern and “BRNO” is brown noddy. B–G are conditional expectation plots of predictors from the model
for continuous (B–D) and categorical model inputs (E–G). Relative TP on the y-axis of B–G refers to the change in trophic position units observed across the range
of values of a predictor. Colored lines (B–D) and center quantile (E–G) represent the respective mean and median of the partial effect of a covariate on the model
prediction of TP. Gray bands and quartiles represent the range and distribution of predictions, akin to a prediction interval. TP declines with increases in catch density
(B) and rates of SST increase (D), and declines as Sea Around Us reported catch landings MTL decreases (C). We assessed model variable importance with a leave
one out sensitivity analysis. Panel (H) shows the proportion of model runs where each covariate appeared at each importance rank. Beyond the splitting power of
species and geography, fisheries related factors rank highly.

the range of predictor-response relationships conditional on the
range of observations of the predictor values (Goldstein et al.,
2015).

Sensitivity Analysis
We conducted a sensitivity analysis on variable importance
rankings using a leave-one-out randomization technique for
modeling fitting to measure sample stability on model inferences
(Figure 1H; Archer and Kimes, 2008). In this process, we
built 500 sets of variable importance values, based on 500
models each run from random subsets of the full sample set.
As opposed to one set of variable importance rankings, this
established a distribution of variable rankings under both sample
perturbations and model fitting stochasticity that is inherent to
random forest. This analysis provides a means to account for
the influence of individual specimens given our relatively limited
sample size.

RESULTS

The sooty tern and brown noddy share a similar ecomorphology
(Gagné et al., 2018). Figure 1A shows comparable trophic
positions within species that decline amongst locations from
American Samoa (mean = 4.00) to Hawaii (3.68) to Florida
(3.59). Additionally, unlike bulk stable isotope analysis, CSIA-
AA accounts for nitrogen from varied food web bases. Therefore,
the observed shifts in trophic position suggest divergence in the

trophic positions of available prey, and food web compression or
simplification.

To model potential regional patterns, we use random forest
models to investigate the influence of anthropogenic and climate
factors on trophic position. We aggregated covariates tied to
environmental and anthropogenic drivers that describe spatial
differences in fisheries-dependent MTL, fisheries landings, and
coupled sea surface temperature rate of change. Our models
suggest that commercial fishing and climate align with the food
web differences between regions. Figures 1B–H shows the model
relationships and the estimated variable importance.

The random forest model explained 57.5% of the variance in
trophic position, with a root mean square error of 0.17. The three
continuous variable inputs show well-defined trends. Trophic
position declines with increasing catch (Figure 1B), increasing
rates of regional sea surface temperature change (Figure 1D), and
as fishery-dependent MTL declines (Figure 1C). The categorical
variables (Figures 1E–G, location, basin, and species) all offer
strong and comparable splitting power (Figure 1H), though little
insight into the changing conditions effecting TP. In the leave-
one-out cross validation (Figure 1H), root mean square error
on the out-of-test sets averaged 0.18 with a 95% quantile range
of 0.098-0.284. This range does highlight some sensitivity to
stability of the specimen dataset, which may be improved in
future studies with additional specimens. However, due to field
logistics and laboratory costs, studies using CSIA-AA for similar
purposes often employ a similar number of replicates as we
have here (see methods). Importantly, however, our sensitivity
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analysis reveals the modeled signal is distinct from the sample
variance.

DISCUSSION

Seabirds as an Alternative Trophic
Indicator
Does higher seabird trophic position describe a less-impacted
ecosystem state? Birds at the Western Atlantic site had a
significantly lower trophic position in both species we measured
(Figure 1A). Our model indicates lower trophic positions at this
site are consistent with chronically high fishing pressure, sea-
surface warming, and low MTL of fisheries catch. Conversely,
our South Pacific site had the highest measured trophic position,
paired with low fishing pressure, a recent cooling trend, and
high MTL in fisheries catch. Future studies that compare
such questions across more extensive geographies and perhaps
timelines may be able to decouple model factors, and better
reveal the individual effects of climate and fisheries on MTL.
Such an approach may provide testing beyond the hypotheses we
generated observationally and refine some of the low-resolution
signals we detected. Nonetheless, in accord with recent reviews
(Estes et al., 2011), we have documented the trophic downgrading
of two seabird species across a large spatial gradient and described
possible contributing factors.

Trophic Position Dissimilarity in Space
Appears to Reflect Declines Across Time
The regional differences we describe are consistent with a recent
130-years analysis of trophic position in seabirds from the
Hawaiian Archipelago. In that study (Gagné et al., 2018), the
ensemble trophic position for eight seabird species declined an
average 0.32 units from 1891–2015. (Sooty tern declined by
0.30 and brown noddy by 0.09.) As trophic position may be a
reliable metric to track ecosystem changes in one ecosystem over
time, it may also reflect food web status across spatially distinct
ecosystems. Given this, the contemporary trophic position
decline we observe when comparing Florida to American Samoa
(0.41) and Hawaii to American Samoa (0.33) is larger than
the 130-years decline observed in Hawaii alone (Gagné et al.,
2018). Compared more directly, however, the spatial gradient in
trophic position between Florida and American Samoa equates
to 161 years of change in Hawaii described by Gagné et al.
(2018) in their seabird ensemble (−0.258 change in trophic
position per century). When we constrain the benchmark to
just the sooty tern and brown noddy data from the Hawaii
study (−0.157 change per 100 years) the metric jumps to 264
years of change. If we make similar comparisons of our spatial
gradient between Hawaii and Florida, those numbers are 34
and 56 years, respectively. Confirming previous studies (e.g.,
Fitzpatrick and Keegan, 2007; Jackson, 2008; Huettmann, 2012),
this suggests historical overfishing and other anthropogenic
impacts in Caribbean coastal ecosystems are significantly more
advanced than in other tropical regions.

In sum, we reaffirm that seabirds are reliable indicators of
marine systems, especially when we use of CSIA-AA to calculate

their trophic position. Importantly, our findings align with
the widely reported consensus that the Gulf of Mexico is a
highly impacted ecosystem (Halpern et al., 2008). To utilize our
approach while also improving upon our constrained sample, we
suggest continued sampling of seabird feathers from museums
and nesting colonies with negligible impacts to wild populations
(strandings, fisheries interactions). Such a monitoring framework
may better inform sampling and modeling needs for ecosystem-
based management and decision making. Furthermore, the
development of a larger sample with our approach will better
elucidate the nature of covariates and their interactions. Active
movement tracking and spatially explicit fishery data, combined
with the tissue sampling approach here, may further inform these
patterns (Cherel et al., 2016). Ultimately, it is becoming clearer
that seabird trophic position varies cross space and time and
that it reliably informs food web status, and particularly the
far-reaching impacts from commercial fisheries extractions.
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