117 research outputs found
Optical and X-ray correlations during the 2015 outburst of the black hole V404 Cyg
We present a serendipitous multiwavelength campaign of optical photometry simultaneous with Integral X-ray monitoring of the 2015 outburst of the black hole V404 Cyg. Large-amplitude optical variability is generally correlated with X-rays, with lags of order a minute or less compatible with binary light travel time-scales or jet ejections. Rapid optical flaring on time-scales of seconds or less is incompatible with binary light-travel time-scales and has instead been associated with synchrotron emission from a jet. Both this rapid jet response and the lagged and smeared one can be present simultaneously. The optical brightness is not uniquely determined by the X-ray brightness, but the X-ray/optical relationship is bounded by a lower envelope such that at any given optical brightness there is a maximum X-ray brightness seen. This lower envelope traces out a Fopt∝F0.54X relation that can be approximately extrapolated back to quiescence. Rapid optical variability is only seen near this envelope, and these periods correspond to the hardest hard X-ray colours. This correlation between hard X-ray colour and optical variability (and anticorrelation with optical brightness) is a novel finding of this campaign, and apparently a facet of the outburst behaviour in V404 Cyg. It is likely that these correlations are driven by changes in the central accretion rate and geometry
An overview of jets and outflows in stellar mass black holes
In this book chapter, we will briefly review the current empirical
understanding of the relation between accretion state and and outflows in
accreting stellar mass black holes. The focus will be on the empirical
connections between X-ray states and relativistic (`radio') jets, although we
are now also able to draw accretion disc winds into the picture in a systematic
way. We will furthermore consider the latest attempts to measure/order jet
power, and to compare it to other (potentially) measurable quantities, most
importantly black hole spin.Comment: Accepted for publication in Space Science Reviews. Also to appear in
the Space Sciences Series of ISSI - The Physics of Accretion on to Black
Holes (Springer Publisher
Radio emission and jets from microquasars
To some extent, all Galactic binary systems hosting a compact object are
potential `microquasars', so much as all galactic nuclei may have been quasars,
once upon a time. The necessary ingredients for a compact object of stellar
mass to qualify as a microquasar seem to be: accretion, rotation and magnetic
field. The presence of a black hole may help, but is not strictly required,
since neutron star X-ray binaries and dwarf novae can be powerful jet sources
as well. The above issues are broadly discussed throughout this Chapter, with a
a rather trivial question in mind: why do we care? In other words: are jets a
negligible phenomenon in terms of accretion power, or do they contribute
significantly to dissipating gravitational potential energy? How do they
influence their surroundings? The latter point is especially relevant in a
broader context, as there is mounting evidence that outflows powered by
super-massive black holes in external galaxies may play a crucial role in
regulating the evolution of cosmic structures. Microquasars can also be thought
of as a form of quasars for the impatient: what makes them appealing, despite
their low number statistics with respect to quasars, are the fast variability
time-scales. In the first approximation, the physics of the jet-accretion
coupling in the innermost regions should be set by the mass/size of the
accretor: stellar mass objects vary on 10^5-10^8 times shorter time-scales,
making it possible to study variable accretion modes and related ejection
phenomena over average Ph.D. time-scales. [Abridged]Comment: 28 pages, 13 figures, To appear in Belloni, T. (ed.): The Jet
Paradigm - From Microquasars to Quasars, Lect. Notes Phys. 794 (2009
Jet disc coupling in black hole binaries
In the last decade multi-wavelength observations have demonstrated the
importance of jets in the energy output of accreting black hole binaries. The
observed correlations between the presence of a jet and the state of the
accretion flow provide important information on the coupling between accretion
and ejection processes. After a brief review of the properties of black hole
binaries, I illustrate the connection between accretion and ejection through
two particularly interesting examples. First, an INTEGRAL observation of Cygnus
X-1 during a 'mini-' state transition reveals disc jet coupling on time scales
of orders of hours. Second, the black hole XTEJ1118+480 shows complex
correlations between the X-ray and optical emission. Those correlations are
interpreted in terms of coupling between disc and jet on time scales of seconds
or less. Those observations are discussed in the framework of current models.Comment: Invited talk at the Fifth Stromlo Symposium: Disks, Winds & Jets -
from Planets to Quasars. Accepted for publication in Astrophysics & Space
Scienc
Unidentified gamma-ray sources off the Galactic plane as low-mass microquasars?
A subset of the unidentified EGRET gamma-ray sources with no active galactic
nucleus or other conspicuous counterpart appears to be concentrated at medium
latitudes. Their long-term variability and their spatial distribution indicate
that they are distinct from the more persistent sources associated with the
nearby Gould Belt. They exhibit a large scale height of 1.3 +/- 0.6 kpc above
the Galactic plane. Potential counterparts for these sources include
microquasars accreting from a low-mass star and spewing a continuous jet.
Detailed calculations have been performed of the jet inverse Compton emission
in the radiation fields from the star, the accretion disc, and a hot corona.
Different jet Lorentz factors, powers, and aspect angles have been explored.
The up-scattered emission from the corona predominates below 100 MeV whereas
the disc and stellar contributions are preponderant at higher energies for
moderate (~15 deg) and small (~1 deg) aspect angles, respectively. Yet, unlike
in the high-mass, brighter versions of these systems, the external Compton
emission largely fails to produce the luminosities required for 5 to 10 kpc
distant EGRET sources. Synchrotron-self-Compton emission appears as a promising
alternative.Comment: 11 pages, 5 figures. Contributed paper to the "Multiwavelength
Approach to Unidentified Gamma-Ray Sources", Eds. K.S. Cheng & G.E. Romero,
to appear in Astrophysics and Space Science journa
'Disc-jet' coupling in black hole X-ray binaries and active galactic nuclei
In this chapter I will review the status of our phenomenological
understanding of the relation between accretion and outflows in accreting black
hole systems. This understanding arises primarily from observing the relation
between X-ray and longer wavelength (infrared, radio) emission. The view is
necessarily a biased one, beginning with observations of X-ray binary systems,
and attempting to see if they match with the general observational properties
of active galactic nuclei.Comment: 28 pages, 15 figures, To appear in Belloni, T. (ed.): The Jet
Paradigm - From Microquasars to Quasars, Lect. Notes Phys. 794 (2009
Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates
Marine N2 fixing microorganisms, termed diazotrophs, are a key functional group in marine pelagic ecosystems. The biological fixation of dinitrogen (N2) to bioavailable nitrogen provides an important new source of nitrogen for pelagic marine ecosystems and influences primary productivity and organic matter export to the deep ocean. As one of a series of efforts to collect biomass and rates specific to different phytoplankton functional groups, we have constructed a database on diazotrophic organisms in the global pelagic upper ocean by compiling about 12 000 direct field measurements of cyanobacterial diazotroph abundances (based on microscopic cell counts or qPCR assays targeting the nifH genes) and N2 fixation rates. Biomass conversion factors are estimated based on cell sizes to convert abundance data to diazotrophic biomass. The database is limited spatially, lacking large regions of the ocean especially in the Indian Ocean. The data are approximately log-normal distributed, and large variances exist in most sub-databases with non-zero values differing 5 to 8 orders of magnitude. Reporting the geometric mean and the range of one geometric standard error below and above the geometric mean, the pelagic N2 fixation rate in the global ocean is estimated to be 62 (52–73) Tg N yr?1 and the pelagic diazotrophic biomass in the global ocean is estimated to be 2.1 (1.4–3.1) Tg C from cell counts and to 89 (43–150) Tg C from nifH-based abundances. Reporting the arithmetic mean and one standard error instead, these three global estimates are 140 ± 9.2 Tg N yr?1, 18 ± 1.8 Tg C and 590 ± 70 Tg C, respectively. Uncertainties related to biomass conversion factors can change the estimate of geometric mean pelagic diazotrophic biomass in the global ocean by about ±70%. It was recently established that the most commonly applied method used to measure N2 fixation has underestimated the true rates. As a result, one can expect that future rate measurements will shift the mean N2 fixation rate upward and may result in significantly higher estimates for the global N2 fixation. The evolving database can nevertheless be used to study spatial and temporal distributions and variations of marine N2 fixation, to validate geochemical estimates and to parameterize and validate biogeochemical models, keeping in mind that future rate measurements may rise in the future. The database is stored in PANGAEA (doi:10.1594/PANGAEA.774851)
Dust in Supernovae and Supernova Remnants I : Formation Scenarios
Supernovae are considered as prime sources of dust in space. Observations of local supernovae over the past couple of decades have detected the presence of dust in supernova ejecta. The reddening of the high redshift quasars also indicate the presence of large masses of dust in early galaxies. Considering the top heavy IMF in the early galaxies, supernovae are assumed to be the major contributor to these large amounts of dust. However, the composition and morphology of dust grains formed in a supernova ejecta is yet to be understood with clarity. Moreover, the dust masses inferred from observations in mid-infrared and submillimeter wavelength regimes differ by two orders of magnitude or more. Therefore, the mechanism responsible for the synthesis of molecules and dust in such environments plays a crucial role in studying the evolution of cosmic dust in galaxies. This review summarises our current knowledge of dust formation in supernova ejecta and tries to quantify the role of supernovae as dust producers in a galaxy.Peer reviewe
- …