244 research outputs found

    Gauge-invariant gravitational wave modes in pre-big bang cosmology

    Full text link
    The t<0 branch of pre-big bang cosmological scenarios is subject to a gravitational wave instability. The unstable behaviour of tensor perturbations is derived in a very simple way in Hwang's covariant and gauge-invariant formalism developed for extended theories of gravity. A simple interpretation of this instability as the effect of an "antifriction" is given, and it is argued that a universe must eventually enter the expanding phase.Comment: 4 pages, latex, to appear in Eur. Phys. J.

    Comment about UV regularization of basic commutators in string theories

    Get PDF
    Recently proposed by Hwang, Marnelius and Saltsidis zeta regularization of basic commutators in string theories is generalized to the string models with non-trivial vacuums. It is shown that implementation of this regularization implies the cancellation of dangerous terms in the commutators between Virasoro generators, which break Jacobi identity.Comment: LaTeX, 9 pages, no figures, submitted to Physics Letters

    Neutron beam test of CsI crystal for dark matter search

    Full text link
    We have studied the response of Tl-doped and Na-doped CsI crystals to nuclear recoils and γ\gamma's below 10 keV. The response of CsI crystals to nuclear recoil was studied with mono-energetic neutrons produced by the 3^3H(p,n)3^3He reaction. This was compared to the response to Compton electrons scattered by 662 keV γ\gamma-ray. Pulse shape discrimination between the response to these γ\gamma's and nuclear recoils was studied, and quality factors were estimated. The quenching factors for nuclear recoils were derived for both CsI(Na) and CsI(Tl) crystals.Comment: 21pages, 14figures, submitted to NIM

    Density perturbations in generalized Einstein scenarios and constraints on nonminimal couplings from the Cosmic Microwave Background

    Full text link
    We study cosmological perturbations in generalized Einstein scenarios and show the equivalence of inflationary observables both in the Jordan frame and the Einstein frame. In particular the consistency relation relating the tensor-to-scalar ratio with the spectral index of tensor perturbations coincides with the one in Einstein gravity, which leads to the same likelihood results in terms of inflationary observables. We apply this formalism to nonminimally coupled chaotic inflationary scenarios with potential V=cϕpV=c\phi^p and place constraints on the strength of nonminimal couplings using a compilation of latest observational data. In the case of the quadratic potential (p=2p=2), the nonminimal coupling is constrained to be ξ>7.0×103\xi>-7.0 \times 10^{-3} for negative ξ\xi from the 1σ1\sigma observational contour bound. Although the quartic potential (p=4p=4) is under a strong observational pressure for ξ=0\xi=0, this property is relaxed by taking into account negative nonminimal couplings. We find that inflationary observables are within the 1σ1\sigma contour bound as long as ξ<1.7×103\xi<-1.7 \times 10^{-3}. We also show that the p6p \ge 6 cases are disfavoured even in the presence of nonminimal couplings.Comment: 16 pages, 4 eps figure

    Factors Associated with Nodal Pathologic Complete Response Among Breast Cancer Patients Treated with Neoadjuvant Chemotherapy: Results of CALGB 40601 (HER2+) and 40603 (Triple-Negative) (Alliance)

    Get PDF
    Background: De-escalation of axillary surgery after neoadjuvant chemotherapy (NAC) requires careful patient selection. We seek to determine predictors of nodal pathologic complete response (ypN0) among patients treated on CALGB 40601 or 40603, which tested NAC regimens in HER2+ and triple-negative breast cancer (TNBC), respectively. Patients and Methods: A total of 760 patients with stage II–III HER2+ or TNBC were analyzed. Those who had axillary surgery before NAC (N = 122), or who had missing pretreatment clinical nodal status (cN) (N = 58) or ypN status (N = 41) were excluded. The proportion of patients with ypN0 disease was estimated for those with and without breast pathologic complete response (pCR) according to pretreatment nodal status. Results: In 539 patients, the overall ypN0 rate was 76.3% (411/539) to 93.2% (245/263) in patients with breast pCR and 60.1% (166/276) with residual breast disease (RD) (P < 0.0001). For patients who were cN0 pretreatment, the ypN0 rate was 88.8% (214/241), 96.3% (104/108) with breast pCR, and 82.7% (110/133) with RD. For patients who were cN1, 66.2% (157/237) converted to ypN0, 91.7% (111/121) with breast pCR and 39.7% (46/116) with RD. For patients who were cN2/3, 65.6% (40/61) converted to ypN0, 88.2% (30/34) with breast pCR and 37.0% (10/27) with RD. On multivariable analysis, only pretreatment clinical nodal status and breast pCR/RD were associated with ypN0 status (both P < 0.0001). Conclusions: Breast pCR and pretreatment nodal status are predictive of ypN0 axillary nodal involvement, with < 5% residual nodal disease among cN0 patients who experience breast pCR. These findings support the incorporation of axillary surgery de-escalation strategies into NAC trials

    Constraints from Inflation on Scalar-Tensor Gravity Theories

    Full text link
    We show how observations of the perturbation spectra produced during inflation may be used to constrain the parameters of general scalar-tensor theories of gravity, which include both an inflaton and dilaton field. An interesting feature of these models is the possibility that the curvature perturbations on super-horizon scales may not be constant due to non-adiabatic perturbations of the two fields. Within a given model, the tilt and relative amplitude of the scalar and tensor perturbation spectra gives constraints on the parameters of the gravity theory, which may be comparable with those from primordial nucleosynthesis and post-Newtonian experiments.Comment: LaTeX (with RevTex) 19 pages, 8 uuencoded figures appended, also available on WWW via http://star.maps.susx.ac.uk/index.htm

    Polymer-stable magnesium nanocomposites prepared by laser ablation for efficient hydrogen storage

    Get PDF
    Hydrogen is a promising alternative energy carrier that can potentially facilitate the transition from fossil fuels to sources of clean energy because of its prominent advantages such as high energy density (142 MJ per kg), great variety of potential sources (for example water, biomass, organic matter), and low environmental impact (water is the sole combustion product). However, due to its light weight, the efficient storage of hydrogen is still an issue investigated intensely. Various solid media have been considered in that respect among which magnesium hydride stands out as a candidate offering distinct advantages. Recent theoretical work indicates that MgH2 becomes less thermodynamically stable as particle diameter decreases below 2 nm. Our DFT (density functional theory) modeling studies have shown that the smallest enthalpy change, corresponding to 2 unit-cell thickness (1.6 {\AA} Mg/3.0{\AA} MgH2) of the film, is 57.7 kJ/molMg. This enthalpy change is over 10 kJ per molMg smaller than that of the bulk. It is important to note that the range of enthalpy change for systems that are suitable for mobile storage applications is 15 to 24 kJ permolH at 298 K. The important key for the development of air/stable Mg/nanocrystals is the use of PMMA (polymethylmethacrylate) as an encapsulation agent. In our work we use laser ablation, a non-electrochemical method, for producing well dispersed nanoparticles without the presence of any long range aggregation. The observed improved hydrogenation characteristics of the polymer/stable Mg-nanoparticles are associated to the preparation procedure and in any case the polymer laser ablation is a new approach for the production of air/protected and inexpensive Mg/nanoparticles.Comment: Hydrogen Storage, Mg - Nanoparticles, Polymer Matrix Composites, Laser Ablation, to appear in International Journal of Hydrogen Energy, 201

    Neoadjuvant Chemotherapy, Endocrine Therapy, and Targeted Therapy for Breast Cancer: ASCO Guideline

    Get PDF
    PURPOSE: To develop guideline recommendations concerning optimal neoadjuvant therapy for breast cancer. METHODS: ASCO convened an Expert Panel to conduct a systematic review of the literature on neoadjuvant therapy for breast cancer and provide recommended care options. RESULTS: A total of 41 articles met eligibility criteria and form the evidentiary basis for the guideline recommendations. RECOMMENDATIONS: Patients undergoing neoadjuvant therapy should be managed by a multidisciplinary care team. Appropriate candidates for neoadjuvant therapy include patients with inflammatory breast cancer and those in whom residual disease may prompt a change in therapy. Neoadjuvant therapy can also be used to reduce the extent of local therapy or reduce delays in initiating therapy. Although tumor histology, grade, stage, and estrogen, progesterone, and human epidermal growth factor receptor 2 (HER2) expression should routinely be used to guide clinical decisions, there is insufficient evidence to support the use of other markers or genomic profiles. Patients with triple-negative breast cancer (TNBC) who have clinically node-positive and/or at least T1c disease should be offered an anthracycline- and taxane-containing regimen; those with cT1a or cT1bN0 TNBC should not routinely be offered neoadjuvant therapy. Carboplatin may be offered to patients with TNBC to increase pathologic complete response. There is currently insufficient evidence to support adding immune checkpoint inhibitors to standard chemotherapy. In patients with hormone receptor (HR)-positive (HR-positive), HER2-negative tumors, neoadjuvant chemotherapy can be used when a treatment decision can be made without surgical information. Among postmenopausal patients with HR-positive, HER2-negative disease, hormone therapy can be used to downstage disease. Patients with node-positive or high-risk node-negative, HER2-positive disease should be offered neoadjuvant therapy in combination with anti-HER2-positive therapy. Patients with T1aN0 and T1bN0, HER2-positive disease should not be routinely offered neoadjuvant therapy.Additional information is available at www.asco.org/breast-cancer-guidelines
    corecore