Hydrogen is a promising alternative energy carrier that can potentially
facilitate the transition from fossil fuels to sources of clean energy because
of its prominent advantages such as high energy density (142 MJ per kg), great
variety of potential sources (for example water, biomass, organic matter), and
low environmental impact (water is the sole combustion product). However, due
to its light weight, the efficient storage of hydrogen is still an issue
investigated intensely. Various solid media have been considered in that
respect among which magnesium hydride stands out as a candidate offering
distinct advantages. Recent theoretical work indicates that MgH2 becomes less
thermodynamically stable as particle diameter decreases below 2 nm. Our DFT
(density functional theory) modeling studies have shown that the smallest
enthalpy change, corresponding to 2 unit-cell thickness (1.6 {\AA} Mg/3.0{\AA}
MgH2) of the film, is 57.7 kJ/molMg. This enthalpy change is over 10 kJ per
molMg smaller than that of the bulk. It is important to note that the range of
enthalpy change for systems that are suitable for mobile storage applications
is 15 to 24 kJ permolH at 298 K. The important key for the development of
air/stable Mg/nanocrystals is the use of PMMA (polymethylmethacrylate) as an
encapsulation agent. In our work we use laser ablation, a non-electrochemical
method, for producing well dispersed nanoparticles without the presence of any
long range aggregation. The observed improved hydrogenation characteristics of
the polymer/stable Mg-nanoparticles are associated to the preparation procedure
and in any case the polymer laser ablation is a new approach for the production
of air/protected and inexpensive Mg/nanoparticles.Comment: Hydrogen Storage, Mg - Nanoparticles, Polymer Matrix Composites,
Laser Ablation, to appear in International Journal of Hydrogen Energy, 201