638 research outputs found
Role of a functional polymorphism in the F2R gene promoter in sarcoidosis
Sarcoidosis is a multisystem granulomatous disease of unknown aetiology characterized by increased inflammation, and results from gene-environment interactions. Proteinase-activated receptor-1 mediates the interplay between coagulation and inflammation. The rs2227744G > A promoter single nucleotide polymorphism has been linked to inflammation, cardiovascular disease and chronic obstructive pulmonary disease exacerbations. Using a case-control study (184 cases with sarcoidosis and 368 controls), we show that the rs2227744A allele significantly associates with protection from sarcoidosis (P = 0.003, OR = 0.68 (0.52-0.88))
On the effects of friction modelling on small punch creep test responses: a numerical investigation
This paper shows the results of finite element (FE) analyses of Small Punch Creep Testing (SPCT) of a P91 steel at 600°C using two different approaches to model the friction between the specimen and the punch. The numerical results obtained by using the “classical” Coulomb friction model (i.e. constant friction coefficient) have been compared with those obtained by a more modern formulation, which takes into account the effects of local loading conditions, i.e. the contact pressure, between the contacting bodies (the small disc specimen and the punch) on the coefficient of friction. The aim of the work is to investigate the effects of the friction formulation used for the calculations on the numerical results representing the output of the test, i.e. the variation of the punch displacement versus time and the time to rupture. The calculations, carried out for various load levels, showed that the friction coefficient is not constant at all positions on the contacting surface between the punch and the specimen during the deformation process. The maximum value for the coefficient of friction is reached at the contact edge, which is a very important region in the specimen, because this is the position at which most of the creep deformation occurs. As expected, the displacement versus time curve (that is usually the only output obtained from experimental SPCTs) is affected by friction formulation which is used, as this directly influences the stress and strain fields in the specimen
Impact of a functional polymorphism in the PAR-1 gene promoter in COPD and COPD exacerbations.
Proteinase-activated receptor-1 (PAR-1) plays a key role in mediating the interplay between coagulation and inflammation in response to injury. The aim of this study was to investigate the role of the promoter single-nucleotide polymorphism (SNP) rs2227744G>A in modulating PAR-1/F2R gene expression in the context of chronic obstructive pulmonary disease (COPD) and COPD exacerbations. The function of the rs2227744G>A SNP was investigated by using reporter gene assays. The frequency of the polymorphism in the UK population was assessed by genotyping 8,579 healthy individuals from the Whitehall II and English Longitudinal Study of Ageing cohorts. The rs2227744G>A SNP was genotyped in a carefully phenotyped cohort of 203 COPD cases and matched controls. The results were further replicated in two different COPD cohorts. The minor allele of the rs2227744G>A polymorphism was found to increase F2R expression by 2.6-fold (P A SNP was not significantly associated with COPD, or with lung function, in all cohorts. The minor allele of the SNP was found to be associated with protection from frequent exacerbations (P = 0.04) in the cohort of COPD patients for which exacerbation frequency was available. Considering exacerbations as a continuous variable, the presence of the minor allele was associated with a significantly lower COPD exacerbation rate (3.03 vs. 1.98 exacerbations/year, Mann-Whitney U-test P = 0.04). Taken together, these data do not support a role for the rs2227744G>A F2R polymorphism in the development of COPD but suggest a protective role for this polymorphism from frequent exacerbations. Studies in separate cohorts to replicate these findings are warranted
Selective serotonin reuptake inhibitors in the treatment of generalized anxiety disorder
Selective serotonin reuptake inhibitors have proven efficacy in the treatment of panic disorder, obsessive–compulsive disorder, post-traumatic stress disorder and social anxiety disorder. Accumulating data shows that selective serotonin reuptake inhibitor treatment can also be efficacious in patients with generalized anxiety disorder. This review summarizes the findings of randomized controlled trials of selective serotonin reuptake inhibitor treatment for generalized anxiety disorder, examines the strengths and weaknesses of other therapeutic approaches and considers potential new treatments for patients with this chronic and disabling anxiety disorder
Tracing Noble Gas Radionuclides in the Environment
Trace analysis of radionuclides is an essential and versatile tool in modern
science and technology. Due to their ideal geophysical and geochemical
properties, long-lived noble gas radionuclides, in particular, 39Ar (t1/2 = 269
yr), 81Kr (t1/2 = 2.3x10^5 yr) and 85Kr (t1/2 = 10.8 yr), have long been
recognized to have a wide range of important applications in Earth sciences. In
recent years, significant progress has been made in the development of
practical analytical methods, and has led to applications of these isotopes in
the hydrosphere (tracing the flow of groundwater and ocean water). In this
article, we introduce the applications of these isotopes and review three
leading analytical methods: Low-Level Counting (LLC), Accelerator Mass
Spectrometry (AMS) and Atom Trap Trace Analysis (ATTA)
Multi-component assessment of chronic obstructive pulmonary disease: an evaluation of the ADO and DOSE indices and the global obstructive lung disease categories in international primary care data sets
Acknowledgements We thank Sian Williams of the International Primary Care Respiratory Group for her help and encouragement with the project. The OPCRD database was made available courtesy of the Respiratory Effectiveness Group and RIRL and the data were kindly prepared for analysis by Julie von Ziegenweidt. Funding The International Primary Care Respiratory Group (IPCRG) provided funding for this research project as an UNLOCK group study for which the funding was obtained through an unrestricted grant by Novartis AG, Basel, Switzerland. The latter funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. Database access for the OPCRD was provided by the Respiratory Effectiveness Group (REG) and Research in Real Life; the OPCRD statistical analysis was funded by REG. The Bocholtz Study was funded by PICASSO for COPD, an initiative of Boehringer Ingelheim, Pfizer and the Caphri Research Institute, Maastricht University, The Netherlands.Peer reviewedPublisher PD
Recommended from our members
SEIS: Insight's Seismic Experiment for Internal Structure of Mars.
By the end of 2018, 42 years after the landing of the two Viking seismometers on Mars, InSight will deploy onto Mars' surface the SEIS (Seismic Experiment for Internal Structure) instrument; a six-axes seismometer equipped with both a long-period three-axes Very Broad Band (VBB) instrument and a three-axes short-period (SP) instrument. These six sensors will cover a broad range of the seismic bandwidth, from 0.01 Hz to 50 Hz, with possible extension to longer periods. Data will be transmitted in the form of three continuous VBB components at 2 sample per second (sps), an estimation of the short period energy content from the SP at 1 sps and a continuous compound VBB/SP vertical axis at 10 sps. The continuous streams will be augmented by requested event data with sample rates from 20 to 100 sps. SEIS will improve upon the existing resolution of Viking's Mars seismic monitoring by a factor of ∼ 2500 at 1 Hz and ∼ 200 000 at 0.1 Hz. An additional major improvement is that, contrary to Viking, the seismometers will be deployed via a robotic arm directly onto Mars' surface and will be protected against temperature and wind by highly efficient thermal and wind shielding. Based on existing knowledge of Mars, it is reasonable to infer a moment magnitude detection threshold of M w ∼ 3 at 40 ∘ epicentral distance and a potential to detect several tens of quakes and about five impacts per year. In this paper, we first describe the science goals of the experiment and the rationale used to define its requirements. We then provide a detailed description of the hardware, from the sensors to the deployment system and associated performance, including transfer functions of the seismic sensors and temperature sensors. We conclude by describing the experiment ground segment, including data processing services, outreach and education networks and provide a description of the format to be used for future data distribution.Electronic supplementary materialThe online version of this article (10.1007/s11214-018-0574-6) contains supplementary material, which is available to authorized users
Experimental and numerical analysis of initial plasticity in P91 steel small punch creep samples
To date, the complex behaviour of small punch creep test (SPCT) specimens has not been completely understood, making the test hard to numerically model and the data difficult to interpret. This paper presents a novel numerical model able to generate results that match the experimental findings. For the first time, pre-strained uniaxial creep test data of a P91 steel at 600 °C have been implemented in a conveniently modified Liu and Murakami creep damage model in order to simulate the effects of the initial localised plasticity on the subsequent creep response of a small punch creep test specimen. Finite element (FE) results, in terms of creep displacement rate and time to failure, obtained by the modified Liu and Murakami model are in good agreement with experimental small punch creep test data. The rupture times obtained by the FE calculations which make use of the non-modified creep damage model are one order of magnitude shorter than those obtained by using the modified constitutive model. Although further investigation is needed, this novel approach has confirmed that the effects of initial localised plasticity, taking place in the early stages of small punch creep test, cannot be neglected. The new results, obtained by using the modified constitutive model, show a significant improvement with respect to those obtained by a state of the art creep damage constitutive model (the Liu and Murakami constitutive model) both in terms of minimum load-line displacement rate and time to rupture. The new modelling method will potentially lead to improved capability for SPCT data interpretatio
Recommended from our members
Comparison of bacterial microbiota of the predatory mite Neoseiulus cucumeris (Acari: Phytoseiidae) and its factitious prey Tyrophagus putrescentiae (Acari: Acaridae)
Neoseiulus cucumeris is a predatory mite used for biological control of arthropod pests. Mass-reared predators are fed with factitious prey mites such as Tyrophagus putrescentiae. Although some information on certain endosymbionts of N. cucumeris and T. putrescentiae exists, it is unclear whether both species share bacterial communities. The bacterial communities in populations of predator and prey mites, as well as the occurence of potential acaropathogenic bacteria were analyzed. The comparisons were based on the following groups: (i) N. cucumeris mass-production; (ii) N. cucumeris laboratory population with disease symptoms; (iii) T. putrescentiae pure populations and; (iv) T. putrescentiae from rearing units of N. cucumeris. Only 15% of OTUs were present in all samples from predatory and prey mite populations (core OTUs): the intracellular symbionts Wolbachia, Cardinium, plus other Blattabacterium-like, Solitalea-like, and Bartonella-like symbionts. Environmental bacteria were more abundant in predatory mites, while symbiotic bacteria prevailed in prey mites. Relative numbers of certain bacterial taxa were significantly different between the microbiota of prey mites reared with and without N. cucumeris. No significant differences were found in the bacterial communities of healthy N. cucumeris compared to N. cucumeris showing disease symptoms. We did not identify any confirmed acaropathogenic bacteria among microbiota
African tropical rainforest net carbon dioxide fluxes in the twentieth century
The African humid tropical biome constitutes the second largest rainforest region, significantly impacts global carbon cycling and climate, and has undergone major changes in functioning owing to climate and land-use change over the past century. We assess changes and trends in CO2 fluxes from 1901 to 2010 using nine land surface models forced with common driving data, and depict the inter-model variability as the uncertainty in fluxes. The biome is estimated to be a natural (no disturbance) net carbon sink (−0.02 kg C m−2 yr−1 or −0.04 Pg C yr−1, p < 0.05) with increasing strength fourfold in the second half of the century. The models were in close agreement on net CO2 flux at the beginning of the century (σ1901 = 0.02 kg C m−2 yr−1), but diverged exponentially throughout the century (σ2010 = 0.03 kg C m−2 yr−1). The increasing uncertainty is due to differences in sensitivity to increasing atmospheric CO2, but not increasing water stress, despite a decrease in precipitation and increase in air temperature. However, the largest uncertainties were associated with the most extreme drought events of the century. These results highlight the need to constrain modelled CO2 fluxes with increasing atmospheric CO2 concentrations and extreme climatic events, as the uncertainties will only amplify in the next century
- …
