417 research outputs found

    Validation of the Saint George's Respiratory Questionnaire in Uganda.

    Get PDF
    INTRODUCTION: Chronic obstructive pulmonary disease (COPD) will soon be the third leading global cause of death and is increasing rapidly in low/middle-income countries. There is a need for local validation of the Saint George's Respiratory Questionnaire (SGRQ), which can be used to identify those experiencing lifestyle impairment due to their breathing. METHODS: The SGRQ was professionally translated into Luganda and reviewed by our field staff and a local pulmonologist. Participants included a COPD-confirmed clinic sample and COPD-positive and negative members of the community who were enrolled in the Lung Function in Nakaseke and Kampala (LiNK) Study. SGRQs were assembled from all participants, while demographic and spirometry data were additionally collected from LiNK participants. RESULTS: In total, 103 questionnaires were included in analysis: 49 with COPD from clinic, 34 community COPD-negative and 20 community COPD-positive. SGRQ score varied by group: 53.5 for clinic, 34.4 for community COPD-positive and 4.1 for community COPD-negative (p<0.001). The cross-validated c statistic for SGRQ total score predicting COPD was 0.87 (95% CI 0.75 to 1.00). SGRQ total score was associated with COPD severity (forced expiratory volume in 1 s per cent of predicted), with an r coefficient of -0.60 (-0.75, -0.39). SGRQ score was associated with dyspnoea (OR 1.05/point; 1.01, 1.09) and cough (1.07; 1.03, 1.11). CONCLUSION: Our Luganda language SGRQ accurately distinguishes between COPD-positive and negative community members in rural Uganda. Scores were correlated with COPD severity and were associated with odds of dyspnoea and cough. We find that it can be successfully used as a respiratory questionnaire for obstructed adults in Uganda

    Selection on Coding and Regulatory Variation Maintains Individuality in Major Urinary Protein Scent Marks in Wild Mice

    Get PDF
    Recognition of individuals by scent is widespread across animal taxa. Though animals can often discriminate chemical blends based on many compounds, recent work shows that specific protein pheromones are necessary and sufficient for individual recognition via scent marks in mice. The genetic nature of individuality in scent marks (e.g. coding versus regulatory variation) and the evolutionary processes that maintain diversity are poorly understood. The individual signatures in scent marks of house mice are the protein products of a group of highly similar paralogs in the major urinary protein (Mup) gene family. Using the offspring of wild-caught mice, we examine individuality in the major urinary protein (MUP) scent marks at the DNA, RNA and protein levels. We show that individuality arises through a combination of variation at amino acid coding sites and differential transcription of central Mup genes across individuals, and we identify eSNPs in promoters. There is no evidence of post-transcriptional processes influencing phenotypic diversity as transcripts accurately predict the relative abundance of proteins in urine samples. The match between transcripts and urine samples taken six months earlier also emphasizes that the proportional relationships across central MUP isoforms in urine is stable. Balancing selection maintains coding variants at moderate frequencies, though pheromone diversity appears limited by interactions with vomeronasal receptors. We find that differential transcription of the central Mup paralogs within and between individuals significantly increases the individuality of pheromone blends. Balancing selection on gene regulation allows for increased individuality via combinatorial diversity in a limited number of pheromones

    The inflammatory and normal transcriptome of mouse bladder detrusor and mucosa

    Get PDF
    BACKGROUND: An organ such as the bladder consists of complex, interacting set of tissues and cells. Inflammation has been implicated in every major disease of the bladder, including cancer, interstitial cystitis, and infection. However, scanty is the information about individual detrusor and urothelium transcriptomes in response to inflammation. Here, we used suppression subtractive hybridizations (SSH) to determine bladder tissue- and disease-specific genes and transcriptional regulatory elements (TRE)s. Unique TREs and genes were assembled into putative networks. RESULTS: It was found that the control bladder mucosa presented regulatory elements driving genes such as myosin light chain phosphatase and calponin 1 that influence the smooth muscle phenotype. In the control detrusor network the Pax-3 TRE was significantly over-represented. During development, the Pax-3 transcription factor (TF) maintains progenitor cells in an undifferentiated state whereas, during inflammation, Pax-3 was suppressed and genes involved in neuronal development (synapsin I) were up-regulated. Therefore, during inflammation, an increased maturation of neural progenitor cells in the muscle may underlie detrusor instability. NF-κB was specifically over-represented in the inflamed mucosa regulatory network. When the inflamed detrusor was compared to control, two major pathways were found, one encoding synapsin I, a neuron-specific phosphoprotein, and the other an important apoptotic protein, siva. In response to LPS-induced inflammation, the liver X receptor was over-represented in both mucosa and detrusor regulatory networks confirming a role for this nuclear receptor in LPS-induced gene expression. CONCLUSION: A new approach for understanding bladder muscle-urothelium interaction was developed by assembling SSH, real time PCR, and TRE analysis results into regulatory networks. Interestingly, some of the TREs and their downstream transcripts originally involved in organogenesis and oncogenesis were also activated during inflammation. The latter represents an additional link between inflammation and cancer. The regulatory networks represent key targets for development of novel drugs targeting bladder diseases

    Intracranial Vertebrobasilar Artery Dissection Associated with Postpartum Angiopathy

    Get PDF
    Background. Cervicocephalic arterial dissection (CCAD) is rare in the postpartum period. To our knowledge this is the first reported case of postpartum angiopathy (PPA) presenting with ischemic stroke due to intracranial arterial dissection. Case. A 41-year-old woman presented with blurred vision, headache, and generalized seizures 5 days after delivering twins. She was treated with magnesium for eclampsia. MRI identified multiple posterior circulation infarcts. Angiography identified a complex dissection extending from both intradural vertebral arteries, through the basilar artery, and into both posterior cerebral arteries. Multiple segments of arterial dilatation and narrowing consistent with PPA were present. Xenon enhanced CT (Xe-CT) showed reduced regional cerebral blood flow that is improved with elevation in blood pressure. Conclusion. Intracranial vertebrobasilar dissection causing stroke is a rare complication of pregnancy. Eclampsia and PPA may play a role in its pathogenesis. Blood pressure management may be tailored using quantitative blood flow studies, such as Xe-CT

    Systematic inference of the long-range dependence and heavy-tail distribution parameters of ARFIMA models

    Get PDF
    Long-Range Dependence (LRD) and heavy-tailed distributions are ubiquitous in natural and socio-economic data. Such data can be self-similar whereby both LRD and heavy-tailed distributions contribute to the self-similarity as measured by the Hurst exponent. Some methods widely used in the physical sciences separately estimate these two parameters, which can lead to estimation bias. Those which do simultaneous estimation are based on frequentist methods such as Whittle’s approximate maximum likelihood estimator. Here we present a new and systematic Bayesian framework for the simultaneous inference of the LRD and heavy-tailed distribution parameters of a parametric ARFIMA model with non-Gaussian innovations. As innovations we use the α-stable and t-distributions which have power law tails. Our algorithm also provides parameter uncertainty estimates. We test our algorithm using synthetic data, and also data from the Geostationary Operational Environmental Satellite system (GOES) solar X-ray time series. These tests show that our algorithm is able to accurately and robustly estimate the LRD and heavy-tailed distribution parameters

    Thermal Conductivity across the Phase Diagram of Cuprates: Low-Energy Quasiparticles and Doping Dependence of the Superconducting Gap

    Full text link
    Heat transport in the cuprate superconductors YBa2_2Cu3_3Oy_{y} and La2x_{2-x}Srx_xCuO4_4 was measured at low temperatures as a function of doping. A residual linear term kappa_{0}/T is observed throughout the superconducting region and it decreases steadily as the Mott insulator is approached from the overdoped regime. The low-energy quasiparticle gap extracted from kappa_{0}/T is seen to scale closely with the pseudogap. The ubiquitous presence of nodes and the tracking of the pseudogap shows that the overall gap remains of the pure d-wave form throughout the phase diagram, which excludes the possibility of a complex component (ix) appearing at a putative quantum phase transition and argues against a non-superconducting origin to the pseudogap. A comparison with superfluid density measurements reveals that the quasiparticle effective charge is weakly dependent on doping and close to unity.Comment: 12 pages, 9 figure

    Weather and our food supply

    Get PDF
    The steep rate of increase in yield of grain crops in the United States since the mid-1950\u27s has resulted in the use of the term explosion in technology. Surplus grains piled up to such proportions after the 1960 · harvest that acreage control appeared. to be in order. But despite substantial reductions in acreages after 1960 the increased output per acre has just about compensated for acreage reductions. During this period of rapid increase in output per acre there has been a growing tendency to believe that technology has reduced the influence of weather on grain production so that we no longer need to fear shortages due to unfavorable weather. There is also a popular belief that acreage control$ fail to achieve the objective of production control, and that public funds are being wasted in storing surplus grains which we don\u27t need. There is increasing evidence, however, that a period of favorable weather interacted with technology to produce our recent high yields, and that perhaps half of the increase in yield per acre since 1950 has been due to a change to more favorable weather for grain crops. These findings have important implications in continued support for research in production technology and in the way in which we look at our surplus stocks of feed and food grains. If a period of favorable weather has been responsible for half of the increase in yields since 19501 then what can we expect if the weather trend reverses itself for a few years? Do we have periodicity in weather, and have we just passed through a run of favorable years that might be followed by a run of unfavorable years? Should we treat our surplus grains as reserves? How does our rate of growth in grain output compare with the needs of a growing world population? And of course I in the background of these questions is one big question -- how much of our recent high yields is really due to weather? To answer these important questions the Center for Agriculture and Economic Development invited outstanding authorities to present their ideas under three main headings: (1) Techniques for Evaluation of Weather Variables in Agricultural Production I (2) Periodicity in Weather Patterns: Implications in Agriculture I and (3) Weather Considerations in Agricultural Policy. The papers have been assembled in the order of their presentation under the general outline above.https://lib.dr.iastate.edu/card_reports/1021/thumbnail.jp

    The Polarization of Ambient Noise on Mars

    Get PDF
    Seismic noise recorded at the surface of Mars has been monitored since February 2019, using the InSight seismometers. This noise can reach −200 dB. It is 500 times lower than on Earth at night and it increases of 30 dB during the day. We analyze its polarization as a function of time and frequency in the band 0.03–1 Hz. We use the degree of polarization to extract signals with stable polarization independent of their amplitude and type of polarization. We detect polarized signals at all frequencies and all times. Glitches correspond to linear polarized signals which are more abundant during the night. For signals with elliptical polarization, the ellipse is in the horizontal plane below 0.3 Hz. In the 0.3-1Hz high frequency band (HF) and except in the evening, the ellipse is in the vertical plane and the major axis is tilted. While polarization azimuths are different in the two frequency bands, they both vary as a function of local hour and season. They are also correlated with wind direction, particularly during the daytime. We investigate possible aseismic and seismic origins of the polarized signals. Lander or tether noise can be discarded. Pressure fluctuations transported by wind may explain part of the HF polarization but not the tilt of the ellipse. This tilt can be obtained if the source is an acoustic emission coming from high altitude at critical angle. Finally, in the evening when the wind is low, the measured polarized signals may correspond to the seismic wavefield of the Mars background noise
    corecore