558 research outputs found

    VaR-implied tail-correlation matrices : [Version October 2013]

    Get PDF
    Empirical evidence suggests that asset returns correlate more strongly in bear markets than conventional correlation estimates imply. We propose a method for determining complete tail correlation matrices based on Value-at-Risk (VaR) estimates. We demonstrate how to obtain more efficient tail-correlation estimates by use of overidentification strategies and how to guarantee positive semidefiniteness, a property required for valid risk aggregation and Markowitz{type portfolio optimization. An empirical application to a 30-asset universe illustrates the practical applicability and relevance of the approach in portfolio management

    Forecasting stock market volatility and the informational efficiency of the DAX-index options market

    Get PDF
    Alternative strategies for predicting stock market volatility are examined. In out-of-sample forecasting experiments implied-volatility information, derived from contemporaneously observed option prices or history-based volatility predictors, such as GARCH models, are investigated, to determine if they are more appropriate for predicting future return volatility. Employing German DAX-index return data it is found that past returns do not contain useful information beyond the volatility expectations already reflected in option prices. This supports the efficient market hypothesis for the DAX-index options market

    Multivariate regime–switching GARCH with an application to international stock markets

    Get PDF
    We develop a multivariate generalization of the Markov–switching GARCH model introduced by Haas, Mittnik, and Paolella (2004b) and derive its fourth–moment structure. An application to international stock markets illustrates the relevance of accounting for volatility regimes from both a statistical and economic perspective, including out–of–sample portfolio selection and computation of Value–at–Risk

    Value-at-Risk and expected shortfall for rare events

    Get PDF
    We show that the use of correlations for modeling dependencies may lead to counterintuitive behavior of risk measures, such as Value-at-Risk (VaR) and Expected Short- fall (ES), when the risk of very rare events is assessed via Monte-Carlo techniques. The phenomenon is demonstrated for mixture models adapted from credit risk analysis as well as for common Poisson-shock models used in reliability theory. An obvious implication of this finding pertains to the analysis of operational risk. The alleged incentive suggested by the New Basel Capital Accord (Basel II), amely decreasing minimum capital requirements by allowing for less than perfect correlation, may not necessarily be attainable

    Multivariate Regime–Switching GARCH with an Application to International Stock Markets

    Get PDF
    We develop a multivariate generalization of the Markov–switching GARCH model introduced by Haas, Mittnik, and Paolella (2004b) and derive its fourth–moment structure. An application to international stock markets illustrates the relevance of accounting for volatility regimes from both a statistical and economic perspective, including out–of–sample portfolio selection and computation of Value–at–Risk.Conditional Volatility, Markov–Switching, Multivariate GARCH

    Portfolio optimization when risk factors are conditionally varying and heavy tailed

    Get PDF
    Assumptions about the dynamic and distributional behavior of risk factors are crucial for the construction of optimal portfolios and for risk assessment. Although asset returns are generally characterized by conditionally varying volatilities and fat tails, the normal distribution with constant variance continues to be the standard framework in portfolio management. Here we propose a practical approach to portfolio selection. It takes both the conditionally varying volatility and the fat-tailedness of risk factors explicitly into account, while retaining analytical tractability and ease of implementation. An application to a portfolio of nine German DAX stocks illustrates that the model is strongly favored by the data and that it is practically implementable. Klassifizierung: C13, C32, G11, G14, G18Die Bewertung von Risiken und die optimale Zusammensetzung von Wertpapier-Portfolios hĂ€ngt insbesondere von den fĂŒr die Risikofaktoren gemachten Annahmen bezĂŒglich der zugrunde liegenden Dynamik und den Verteilungseigenschaften ab. In der empirischen Finanzmarkt-Analyse ist weitestgehend akzeptiert, daß die Renditen von Finanzmarkt-Zeitreihen zeitvariierende VolatilitĂ€t (HeteroskedastizitÄat) zeigen und daß die bedingte Verteilung der Renditen von der Normalverteilung abweichende Eigenschaften aufweisen. Insbesondere die Enden der Verteilung weisen eine gegenĂŒber der Normalverteilung höhere Wahrscheinlichkeitsdichte auf ('fat-tails') und hĂ€ufig ist die beobachtete Verteilung nicht symmetrisch. Trotzdem stellt die Normalverteilungs-Annahme mit konstanter Varianz weiterhin die Basis fĂŒr den Mittelwert-Varianz Ansatz zur Portfolio-Optimierung dar. In der vorliegenden Studie schlagen wir einen praktikablen Ansatz zur Portfolio-Selektion mit einem Mittelwert-Skalen Ansatz vor, der sowohl die bedingte HeteroskedastizitĂ€t der Renditen, als auch die von der Normalverteilung abweichenden Eigenschaften zu berĂŒcksichtigen in der Lage ist. Wir verwenden dazu eine dem GARCH ModellĂ€hnliche Dynamik der Risikofaktoren und verwenden stabile Verteilungen anstelle der Normalverteilung. Dabei gewĂ€hrleistet das von uns vorgeschlagene Faktor-Modell sowohl gute analytische Eigenschaften und ist darĂŒberhinaus auch einfach zu implementieren. Eine beispielhafte Anwendung des vorgeschlagenen Modells mit neun Aktien aus dem Deutschen Aktienindex veranschaulicht die bessere Anpassung des vorgeschlagenen Modells an die Daten und demonstriert die Anwendbarkeit zum Zwecke der Portfolio-Optimierung

    Boosting the Anatomy of Volatility

    Get PDF
    Risk and, thus, the volatility of financial asset prices plays a major role in financial decision making and financial regulation. Therefore, understanding and predicting the volatility of financial instruments, asset classes or financial markets in general is of utmost importance for individual and institutional investors as well as for central bankers and financial regulators. In this paper we investigate new strategies for understanding and predicting financial risk. Specifically, we use componentwise, gradient boosting techniques to identify factors that drive financial-market risk and to assess the specific nature with which these factors affect future volatility. Componentwise boosting is a sequential learning method, which has the advantages that it can handle a large number of predictors and that it-in contrast to other machine-learning techniques-preserves interpretation. Adopting an EGARCH framework and employing a wide range of potential risk drivers, we derive monthly volatility predictions for stock, bond, commodity, and foreign exchange markets. Comparisons with alternative benchmark models show that boosting techniques improve out-of-sample volatility forecasts, especially for medium- and long-run horizons. Another finding is that a number of risk drivers affect volatility in a nonlinear fashion

    Multivariate normal mixture GARCH

    Get PDF
    We present a multivariate generalization of the mixed normal GARCH model proposed in Haas, Mittnik, and Paolella (2004a). Issues of parametrization and estimation are discussed. We derive conditions for covariance stationarity and the existence of the fourth moment, and provide expressions for the dynamic correlation structure of the process. These results are also applicable to the single-component multivariate GARCH(p, q) model and simplify the results existing in the literature. In an application to stock returns, we show that the disaggregation of the conditional (co)variance process generated by our model provides substantial intuition, and we highlight a number of findings with potential significance for portfolio selection and further financial applications, such as regime-dependent correlation structures and leverage effects. Klassifikation: C32, C51, G10, G11Die vorliegende Arbeit ist einer multivariaten Verallgemeinerung des sog. Normal Mixture GARCH Modells gewidmet, dessen univariate Variante von Haas, Mittnik und Paolella (2004a, siehe auch CFS Working Paper 2002/10) vorgeschlagen wurde. Dieses Modell unterscheidet sich von traditionellen GARCH-AnsĂ€tzen insbesondere dadurch, dass es eine AbhĂ€ngigkeit der Risikoentwicklung von - typischerweise unbeobachtbaren - MarktzustĂ€nden explizit in Rechnung stellt. Dies wird durch die Beobachtung motiviert, dass das weit verbreitete GARCH Modell in seiner Standardvariante auch dann keine adĂ€quate Beschreibung der Risikodynamik leistet, wenn die Normalverteilung durch flexiblere bedingte Verteilungen ersetzt wird. ZustandsabhĂ€ngige VolatilitĂ€tsprozesse können etwa durch die variierende Dominanz heterogener Marktteilnehmer oder durch wechselnde Marktstimmungen ökonomisch zu erklĂ€ren sein. Anwendungen des Normal Mixture GARCH Modells auf zahlreiche Aktien- und Wechselkurszeitreihen (siehe z.B. Alexander und Lazar, 2004, 2005; und Haas, Mittnik und Paolella, 2004a,b) haben gezeigt, dass es sich zur Modellierung und Prognose des VolatilitĂ€tsprozesses der Renditen solcher Aktiva hervorragend eignet. Indes beschrĂ€nken sich diese Analysen bisher auf die Untersuchung univariater Zeitreihen. Zahlreiche Probleme der Finanzwirtschaft erfordern jedoch zwingend eine multivariate Modellierung, mithin also eine Beschreibung der AbhĂ€ngigkeitsstruktur zwischen den Renditen verschiedener Wertpapiere. Insbesondere fĂŒr solche Analysen erweist sich der Mischungsansatz aber als besonders vielversprechend. So spielen etwa im Portfoliomanagement die Korrelationen zwischen einzelnen Wertpapierrenditen eine herausragende Rolle. Die StĂ€rke der Korrelationen ist von entscheidender Bedeutung dafĂŒr, in welchem Ausmaß das Risiko eines effizienten Portfolios durch Diversifikation reduziert werden kann. Nun gibt es empirische Hinweise darauf, dass die Korrelationen etwa zwischen Aktien in Perioden, die durch starke Marktschwankungen und tendenziell fallende Kurse charakterisiert sind, stĂ€rker sind als in ruhigeren Perioden. Das bedeutet, dass die Vorteile der Diversifikation in genau jenen Perioden geringer sind, in denen ihr Nutzen am grĂ¶ĂŸten wĂ€re. Modelle, die die Existenz unterschiedlicher Marktregime nicht berĂŒcksichtigen, werden daher dazu tendieren, die Korrelationen in den adversen MarktzustĂ€nden zu unterschĂ€tzen. Dies kann zu erheblichen FehleinschĂ€tzungen des tatsĂ€chlichen Risikos wĂ€hrend solcher Perioden fĂŒhren. Diese und weitere Implikationen des Mischungsansatzes im Kontext multivariater GARCH Modelle werden in der vorliegenden Arbeit diskutiert, und ihre Relevanz wird anhand einer empirischen Anwendung dokumentiert. Erörtert werden ferner Fragen der Parametrisierung und SchĂ€tzung des Modells, und einige relevante theoretische Eigenschaften werden hergeleitet

    Mixed normal conditional heteroskedasticity

    Get PDF
    Both unconditional mixed-normal distributions and GARCH models with fat-tailed conditional distributions have been employed for modeling financial return data. We consider a mixed-normal distribution coupled with a GARCH-type structure which allows for conditional variance in each of the components as well as dynamic feedback between the components. Special cases and relationships with previously proposed specifications are discussed and stationarity conditions are derived. An empirical application to NASDAQ-index data indicates the appropriateness of the model class and illustrates that the approach can generate a plausible disaggregation of the conditional variance process, in which the components' volatility dynamics have a clearly distinct behavior that is, for example, compatible with the well-known leverage effect. Klassifikation: C22, C51, G1

    Assessing Central Bank Credibility During the ERM Crises: Comparing Option and Spot Market-Based Forecasts

    Get PDF
    Financial markets embed expectations of central bank policy into asset prices. This paper compares two approaches that extract a probability density of market beliefs. The first is a simulatedmoments estimator for option volatilities described in Mizrach (2002); the second is a new approach developed by Haas, Mittnik and Paolella (2004a) for fat-tailed conditionally heteroskedastic time series. In an application to the 1992-93 European Exchange Rate Mechanism crises, that both the options and the underlying exchange rates provide useful information for policy makers.Options; Implied Probability Densities; GARCH; Fat-tails; Exchange Rate Mechanism
    • 

    corecore