32,858 research outputs found

    Optimization of Occlusion-Inducing Depth Pixels in 3-D Video Coding

    Full text link
    The optimization of occlusion-inducing depth pixels in depth map coding has received little attention in the literature, since their associated texture pixels are occluded in the synthesized view and their effect on the synthesized view is considered negligible. However, the occlusion-inducing depth pixels still need to consume the bits to be transmitted, and will induce geometry distortion that inherently exists in the synthesized view. In this paper, we propose an efficient depth map coding scheme specifically for the occlusion-inducing depth pixels by using allowable depth distortions. Firstly, we formulate a problem of minimizing the overall geometry distortion in the occlusion subject to the bit rate constraint, for which the depth distortion is properly adjusted within the set of allowable depth distortions that introduce the same disparity error as the initial depth distortion. Then, we propose a dynamic programming solution to find the optimal depth distortion vector for the occlusion. The proposed algorithm can improve the coding efficiency without alteration of the occlusion order. Simulation results confirm the performance improvement compared to other existing algorithms

    On the use of an explicit chemical mechanism to dissect peroxy acetyl nitrate formation.

    Get PDF
    Peroxy acetyl nitrate (PAN) is a key component of photochemical smog and plays an important role in atmospheric chemistry. Though it has been known that PAN is produced via reactions of nitrogen oxides (NOx) with some volatile organic compounds (VOCs), it is difficult to quantify the contributions of individual precursor species. Here we use an explicit photochemical model--Master Chemical Mechanism (MCM) model--to dissect PAN formation and identify principal precursors, by analyzing measurements made in Beijing in summer 2008. PAN production was sensitive to both NOx and VOCs. Isoprene was the predominant VOC precursor at suburb with biogenic impact, whilst anthropogenic hydrocarbons dominated at downtown. PAN production was attributable to a relatively small class of compounds including NOx, xylenes, trimethylbenzenes, trans/cis-2-butenes, toluene, and propene. MCM can advance understanding of PAN photochemistry to a species level, and provide more relevant recommendations for mitigating photochemical pollution in large cities

    Computing Optical Properties of Ultra-thin Crystals

    Get PDF
    An overview is given of recent advances in experimental and theoretical understanding of optical properties of ultra-thin crystal structures (graphene, phosphorene, silicene, MoS2, MoSe2 , WS2 , WSe2 , h-AlN, h-BN, fluorographene, graphane). Ultra-thin crystals are atomically-thick layered crystals that have unique properties which differ from their 3D counterpart. Because of the difficulties in the synthesis of few-atom-thick crystal structures, which are thought to be the main building blocks of future nanotechnology, reliable theoretical predictions of their electronic, vibrational and optical properties are of great importance. Recent studies revealed the reliable predictive power of existing theoretical approaches based on density functional theory (DFT)

    Signatures of Self-Interacting Dark Matter in the Matter Power Spectrum and the CMB

    Full text link
    We consider a self-interacting dark matter model in which the massive dark photon mediating the self-interaction decays to light dark fermions to avoid over-closing the universe. We find that if the model is constrained to explain the dark matter halos inferred for spiral galaxies and galaxy clusters simultaneously, there is a strong indication that dark matter is produced asymmetrically in the early universe. It also implies the presence of dark radiation, late kinetic decoupling for dark matter, and a suppressed linear power spectrum due to dark acoustic damping. The Lyman-α\alpha forest power spectrum measurements put a strong upper limit on the damping scale and the model has little room to reduce the abundances of satellite galaxies. Future observations in the matter power spectrum and the CMB, in tandem with the impact of self-interactions in galactic halos, makes it possible to measure the gauge coupling and masses of the dark sector particles even when signals in conventional dark matter searches are absent.Comment: 5 pages, 7 figures, published version in PL

    Using microlensed quasars to probe the structure of the Milky Way

    Full text link
    This paper presents an investigation into the gravitational microlensing of quasars by stars and stellar remnants in the Milky Way. We present predictions for the all-sky microlensing optical depth, time-scale distributions and event rates for future large-area sky surveys. As expected, the total event rate increases rapidly with increasing magnitude limit, reflecting the fact that the number density of quasars is a steep function of magnitude. Surveys such as Pan-STARRS and LSST should be able to detect more than ten events per year, with typical event durations of around one month. Since microlensing of quasar sources suffers from fewer degeneracies than lensing of Milky Way sources, they could be used as a powerful tool for recovering the mass of the lensing object in a robust, often model-independent, manner. As a consequence, for a subset of these events it will be possible to directly `weigh' the star (or stellar remnant) that is causing the lensing signal, either through higher order microlensing effects and/or high-precision astrometric observations of the lens star (using, for example, Gaia or SIM-lite). This means that such events could play a crucial role in stellar astronomy. Given the current operational timelines for Pan-STARRS and LSST, by the end of the decade they could potentially detect up to 100 events. Although this is still too few events to place detailed constraints on Galactic models, consistency checks can be carried out and such samples could lead to exciting and unexpected discoveries.Comment: 11 pages, 8 figures. MNRAS (in press). Minor revisions according to referee's report; mainly presentational issues and clarification of a few items in the discussion; results and conclusions remain unchange

    English versus Swahili: language choice in Bongo Flava as expression of cultural and economic changes in Tanzania

    Get PDF
    Since around 2011, Bongo Flava musicians use significantly more English in their lyrics than in the previous years, particularly in love songs. This article documents and describes this new trend and discusses the reasons for the change in language use. It reveals that the new development is indicative of a transformation of Bongo Flava towards pop, caused by changes in the domestic market on the one hand and by a growing outward-looking market orientation on the other. These changes are demanding new ways of constructing identities through the use of language.Tangu mnamo mwaka 2011, wasanii wa Bongo Flava walio wengi hutumia kiasi kikubwa cha Kiinge¬reza katika nyimbo zao ukilinganisha na miaka ya nyuma. Hali hiyo inajionyesha zaidi katika nyimbo za mapenzi. Makala hii inaeleza mwelekeo huo mpya na kujadili sababu zake. Inatoa hoja ya kwamba mwelekeo huo umesababishwa hasa na mabadiliko katika soko la muziki ndani na nje ya Tanzania, hasa katika bara la Afrika. Mabadiliko hayo ndiyo yanayosababisha kutumia zaidi lugha ya Kiingereza
    corecore