495 research outputs found

    Optical Properties of BN in the cubic and in the layered hexagonal phases

    Full text link
    Linear optical functions of cubic and hexagonal BN have been studied within first principles DFT-LDA theory. Calculated energy-loss functions compare well with experiments and previous theoretical results both for h-BN and for c-BN. Discrepancies arise between theoretical results and experiments in the imaginary part of the dielectric function for c-BN. Possible explanation to this mismatch are proposed and evaluated; lattice constant variations, h-BN contamination in c-BN samples and self-energy effects.Comment: RevTex 42 pages, 16 postscript figures embedde

    Optoelectronic Properties and Excitons in Hybridized Boron Nitride and Graphene Hexagonal Monolayers

    Get PDF
    We explain the nature of the electronic band gap and optical absorption spectrum of Carbon - Boron Nitride (CBN) hybridized monolayers using density functional theory (DFT), GW and Bethe-Salpeter equation calculations. The CBN optoelectronic properties result from the overall monolayer bandstructure, whose quasiparticle states are controlled by the C domain size and lie at separate energy for C and BN without significant mixing at the band edge, as confirmed by the presence of strongly bound bright exciton states localized within the C domains. The resulting absorption spectra show two marked peaks whose energy and relative intensity vary with composition in agreement with the experiment, with large compensating quasiparticle and excitonic corrections compared to DFT calculations. The band gap and the optical absorption are not regulated by the monolayer composition as customary for bulk semiconductor alloys and cannot be understood as a superposition of the properties of bulk-like C and BN domains as recent experiments suggested

    How strong is the Second Harmonic Generation in single-layer monochalcogenides? A response from first-principles real-time simulations

    Full text link
    Second Harmonic Generation (SHG) of single-layer monochalcogenides, such as GaSe and InSe, has been recently reported [2D Mater. 5 (2018) 025019; J. Am. Chem. Soc. 2015, 137, 79947997] to be extremely strong with respect to bulk and multilayer forms. To clarify the origin of this strong SHG signal, we perform first-principles real-time simulations of linear and non-linear optical properties of these two-dimensional semiconducting materials. The simulations, based on ab-initio many-body theory, accurately treat the electron-hole correlation and capture excitonic effects that are deemed important to correctly predict the optical properties of such systems. We find indeed that, as observed for other 2D systems, the SHG intensity is redistributed at excitonic resonances. The obtained theoretical SHG intensity is an order of magnitude smaller than that reported at the experimental level. This result is in substantial agreement with previously published simulations which neglected the electron-hole correlation, demonstrating that many-body interactions are not at the origin of the strong SHG measured. We then show that the experimental data can be reconciled with the theoretical prediction when a single layer model, rather than a bulk one, is used to extract the SHG coefficient from the experimental data.Comment: 8 pages, 4 figure

    FROM THE ROAD SIGN TO THE MAP: 3D MODELING IN SUPPORT OF THE URBAN AND RURAL ROAD CONDITIONS

    Get PDF
    Unmanned Aerial Vehicles (UAV), commonly known as a drone, and an Unmanned Aircraft Systems (UAS) have been spreading on a massive scale during the last few years, especially for civilian use. And this situation can have significant repercussions on the ways and purposes with which we make photogrammetry nowadays. In this brief article we take into account the italian road signs as a case study on which to apply the new potential of photogrammetry realized with the aid of drones. Our main purpose is to achieve a specific method which allows the calculation of centimeter precision measurements of solids reconstructed for a mapping of (public and private) road signs which require verification or replacement in urban, peri-urban and rural areas. Our hope is that this new approach to photogrammetry may arise opportunities for dialogue with policy makers especially where the usefulness of mapping could also appear predictive with respect to recurrent issues before they become consolidated

    La competencia judicial en los procesos de amparo por acceso a información. Referida a políticas públicas de infancia y adolescencia

    Get PDF
    El presente trabajo aborda la temática de la competencia judicial en los procesos promovidos ante la negativa de la Administración de proporcionar información que es indispensable para comprobar el efectivo goce de derechos de la infancia y la adolescencia; verificar la forma en la cual se le da cumplimiento a principios recogidos en la normativa nacional o internacional que le reconoce los derechos humanos de la infancia y la adolescencia, o cuando dicha información es necesaria para realizar una tarea de contralor de las políticas públicas relativas a esos derechos

    Ab initio energy loss spectra of Si and Ge nanowires

    Get PDF
    We report an ab initio investigation of fast electron energy-loss probability in silicon and germanium nanowires. Computed energy loss spectra are characterized by a strong enhancement of the direct interband transition peak at low energy, in good agreement with experimental data. Our calculations predict an important diameter dependence of the bulk volume plasmon peak for very thin wires which is consistent with the blue shift observed experimentally in thicker wires
    • …
    corecore