815 research outputs found

    Listening In on the Past: What Can Otolith δ18O Values Really Tell Us about the Environmental History of Fishes?

    Get PDF
    Oxygen isotope ratios from fish otoliths are used to discriminate marine stocks and reconstruct past climate, assuming that variations in otolith δ18O values closely reflect differences in temperature history of fish when accounting for salinity induced variability in water δ18O. To investigate this, we exploited the environmental and migratory data gathered from a decade using archival tags to study the behaviour of adult plaice (Pleuronectes platessa L.) in the North Sea. Based on the tag-derived monthly distributions of the fish and corresponding temperature and salinity estimates modelled across three consecutive years, we first predicted annual otolith δ18O values for three geographically discrete offshore sub-stocks, using three alternative plausible scenarios for otolith growth. Comparison of predicted vs. measured annual δ18O values demonstrated >96% correct prediction of sub-stock membership, irrespective of the otolith growth scenario. Pronounced inter-stock differences in δ18O values, notably in summer, provide a robust marker for reconstructing broad-scale plaice distribution in the North Sea. However, although largely congruent, measured and predicted annual δ18O values of did not fully match. Small, but consistent, offsets were also observed between individual high-resolution otolith δ18O values measured during tag recording time and corresponding δ18O predictions using concomitant tag-recorded temperatures and location-specific salinity estimates. The nature of the shifts differed among sub-stocks, suggesting specific vital effects linked to variation in physiological response to temperature. Therefore, although otolith δ18O in free-ranging fish largely reflects environmental temperature and salinity, we counsel prudence when interpreting otolith δ18O data for stock discrimination or temperature reconstruction until the mechanisms underpinning otolith δ18O signature acquisition, and associated variation, are clarified

    Oral contraceptive use and risk of melanoma in premenopausal women

    Get PDF
    Melanoma has been increasing in white populations. Incidence rates rise steeply in women until about age 50, suggesting oestrogen as a possible risk factor. Oestrogens can increase melanocyte count and melanin content and cause hyperpigmentation of the skin. We examined prospectively the association between oral contraceptive (OC) use and diagnoses of superficial spreading and nodular melanoma among 183 693 premenopausal white women in the Nurses’ Health Study (NHS) and the Nurses’ Health Study II (NHS II) cohorts. One hundred and forty six cases were confirmed in NHS during follow-up from 1976 to 1994, and 106 cases were confirmed in NHS II from 1989 to 1995. Skin reaction to sun exposure, sunburn history, mole counts, hair colour, family history of melanoma, parity, height and body mass index were also assessed and included in logistic regression models. A significant twofold increase in risk of melanoma (relative risk (RR) = 2.0, 95% confidence interval (CI) 1.2–3.4) was observed among current OC users compared to never users. Risk was further increased among current users with 10 or more years of use (RR = 3.4, 95% CI 1.7–7.0). Risk did not appear elevated among past OC users, even among those with longer durations of use, and risk did not decline linearly with time since last use. In conclusion, risk of premenopausal melanoma may be increased among women who are current OC users, particularly among those with longer durations of use. Further research is needed to determine whether low-dose oestrogen pills in particular are associated with an increase in risk and to describe possible interactions between OC use and sun exposure or other risk factors for melanoma. © 1999 Cancer Research Campaig

    Inherited biotic protection in a Neotropical pioneer plant

    Get PDF
    Chelonanthus alatus is a bat-pollinated, pioneer Gentianaceae that clusters in patches where still-standing, dried-out stems are interspersed among live individuals. Flowers bear circum-floral nectaries (CFNs) that are attractive to ants, and seed dispersal is both barochorous and anemochorous. Although, in this study, live individuals never sheltered ant colonies, dried-out hollow stems - that can remain standing for 2 years - did. Workers from species nesting in dried-out stems as well as from ground-nesting species exploited the CFNs of live C. alatus individuals in the same patches during the daytime, but were absent at night (when bat pollination occurs) on 60.5% of the plants. By visiting the CFNs, the ants indirectly protect the flowers - but not the plant foliage - from herbivorous insects. We show that this protection is provided mostly by species nesting in dried-out stems, predominantly Pseudomyrmex gracilis. That dried-out stems remain standing for years and are regularly replaced results in an opportunistic, but stable association where colonies are sheltered by one generation of dead C. alatus while the live individuals nearby, belonging to the next generation, provide them with nectar; in turn, the ants protect their flowers from herbivores. We suggest that the investment in wood by C. alatus individuals permitting stillstanding, dried-out stems to shelter ant colonies constitutes an extended phenotype because foraging workers protect the flowers of live individuals in the same patch. Also, through this process these dried-out stems indirectly favor the reproduction (and so the fitness) of the next generation including both their own offspring and that of their siblings, alladding up to a potential case of inclusive fitness in plants

    Epidemiological Characteristics of Classical Scrapie Outbreaks in 30 Sheep Flocks in the United Kingdom

    Get PDF
    Most previous analyses of scrapie outbreaks have focused on flocks run by research institutes, which may not reflect the field situation. Within this study, we attempt to rectify this deficit by describing the epidemiological characteristics of 30 sheep flocks naturally-infected with classical scrapie, and by exploring possible underlying causes of variation in the characteristics between flocks, including flock-level prion protein (PrP) genotype profile. In total, the study involved PrP genotype data for nearly 8600 animals and over 400 scrapie cases.We found that most scrapie cases were restricted to just two PrP genotypes (ARQ/VRQ and VRQ/VRQ), though two flocks had markedly different affected genotypes, despite having similar underlying genotype profiles to other flocks of the same breed; we identified differences amongst flocks in the age of cases of certain PrP genotypes; we found that the age-at-onset of clinical signs depended on peak incidence and flock type; we found evidence that purchasing infected animals is an important means of introducing scrapie to a flock; we found some evidence that flock-level PrP genotype profile and flock size account for variation in outbreak characteristics; identified seasonality in cases associated with lambing time in certain flocks; and we identified one case that was homozygous for phenylalanine at codon 141, a polymorphism associated with a very high risk of atypical scrapie, and 28 cases that were heterozygous at this codon.This paper presents the largest study to date on commercially-run sheep flocks naturally-infected with classical scrapie, involving 30 study flocks, more than 400 scrapie cases and over 8500 PrP genotypes. We show that some of the observed variation in epidemiological characteristics between farms is related to differences in their PrP genotype profile; although much remains unexplained and may instead be attributed to the stochastic nature of scrapie dynamics

    Structure of the hDmc1-ssDNA filament reveals the principles of its architecture

    Get PDF
    In eukaryotes, meiotic recombination is a major source of genetic diversity, but its defects in humans lead to abnormalities such as Down's, Klinefelter's and other syndromes. Human Dmc1 (hDmc1), a RecA/Rad51 homologue, is a recombinase that plays a crucial role in faithful chromosome segregation during meiosis. The initial step of homologous recombination occurs when hDmc1 forms a filament on single-stranded (ss) DNA. However the structure of this presynaptic complex filament for hDmc1 remains unknown. To compare hDmc1-ssDNA complexes to those known for the RecA/Rad51 family we have obtained electron microscopy (EM) structures of hDmc1-ssDNA nucleoprotein filaments using single particle approach. The EM maps were analysed by docking crystal structures of Dmc1, Rad51, RadA, RecA and DNA. To fully characterise hDmc1-DNA complexes we have analysed their organisation in the presence of Ca2+, Mg2+, ATP, AMP-PNP, ssDNA and dsDNA. The 3D EM structures of the hDmc1-ssDNA filaments allowed us to elucidate the principles of their internal architecture. Similar to the RecA/Rad51 family, hDmc1 forms helical filaments on ssDNA in two states: extended (active) and compressed (inactive). However, in contrast to the RecA/Rad51 family, and the recently reported structure of hDmc1-double stranded (ds) DNA nucleoprotein filaments, the extended (active) state of the hDmc1 filament formed on ssDNA has nine protomers per helical turn, instead of the conventional six, resulting in one protomer covering two nucleotides instead of three. The control reconstruction of the hDmc1-dsDNA filament revealed 6.4 protein subunits per helical turn indicating that the filament organisation varies depending on the DNA templates. Our structural analysis has also revealed that the N-terminal domain of hDmc1 accomplishes its important role in complex formation through domain swapping between adjacent protomers, thus providing a mechanistic basis for coordinated action of hDmc1 protomers during meiotic recombination

    Budding yeast ATM/ATR control meiotic double-strand break (DSB) levels by down-regulating Rec114, an essential component of the DSB-machinery

    Get PDF
    An essential feature of meiosis is Spo11 catalysis of programmed DNA double strand breaks (DSBs). Evidence suggests that the number of DSBs generated per meiosis is genetically determined and that this ability to maintain a pre-determined DSB level, or "DSB homeostasis", might be a property of the meiotic program. Here, we present direct evidence that Rec114, an evolutionarily conserved essential component of the meiotic DSB-machinery, interacts with DSB hotspot DNA, and that Tel1 and Mec1, the budding yeast ATM and ATR, respectively, down-regulate Rec114 upon meiotic DSB formation through phosphorylation. Mimicking constitutive phosphorylation reduces the interaction between Rec114 and DSB hotspot DNA, resulting in a reduction and/or delay in DSB formation. Conversely, a non-phosphorylatable rec114 allele confers a genome-wide increase in both DSB levels and in the interaction between Rec114 and the DSB hotspot DNA. These observations strongly suggest that Tel1 and/or Mec1 phosphorylation of Rec114 following Spo11 catalysis down-regulates DSB formation by limiting the interaction between Rec114 and DSB hotspots. We also present evidence that Ndt80, a meiosis specific transcription factor, contributes to Rec114 degradation, consistent with its requirement for complete cessation of DSB formation. Loss of Rec114 foci from chromatin is associated with homolog synapsis but independent of Ndt80 or Tel1/Mec1 phosphorylation. Taken together, we present evidence for three independent ways of regulating Rec114 activity, which likely contribute to meiotic DSBs-homeostasis in maintaining genetically determined levels of breaks

    Epidemiological Characteristics of Classical Scrapie Outbreaks in 30 Sheep Flocks in the United Kingdom

    Get PDF
    Most previous analyses of scrapie outbreaks have focused on flocks run by research institutes, which may not reflect the field situation. Within this study, we attempt to rectify this deficit by describing the epidemiological characteristics of 30 sheep flocks naturally-infected with classical scrapie, and by exploring possible underlying causes of variation in the characteristics between flocks, including flock-level prion protein (PrP) genotype profile. In total, the study involved PrP genotype data for nearly 8600 animals and over 400 scrapie cases.We found that most scrapie cases were restricted to just two PrP genotypes (ARQ/VRQ and VRQ/VRQ), though two flocks had markedly different affected genotypes, despite having similar underlying genotype profiles to other flocks of the same breed; we identified differences amongst flocks in the age of cases of certain PrP genotypes; we found that the age-at-onset of clinical signs depended on peak incidence and flock type; we found evidence that purchasing infected animals is an important means of introducing scrapie to a flock; we found some evidence that flock-level PrP genotype profile and flock size account for variation in outbreak characteristics; identified seasonality in cases associated with lambing time in certain flocks; and we identified one case that was homozygous for phenylalanine at codon 141, a polymorphism associated with a very high risk of atypical scrapie, and 28 cases that were heterozygous at this codon.This paper presents the largest study to date on commercially-run sheep flocks naturally-infected with classical scrapie, involving 30 study flocks, more than 400 scrapie cases and over 8500 PrP genotypes. We show that some of the observed variation in epidemiological characteristics between farms is related to differences in their PrP genotype profile; although much remains unexplained and may instead be attributed to the stochastic nature of scrapie dynamics

    Proteomic analysis of the Plasmodium male gamete reveals the key role for glycolysis in flagellar motility.

    Get PDF
    BACKGROUND: Gametogenesis and fertilization play crucial roles in malaria transmission. While male gametes are thought to be amongst the simplest eukaryotic cells and are proven targets of transmission blocking immunity, little is known about their molecular organization. For example, the pathway of energy metabolism that power motility, a feature that facilitates gamete encounter and fertilization, is unknown. METHODS: Plasmodium berghei microgametes were purified and analysed by whole-cell proteomic analysis for the first time. Data are available via ProteomeXchange with identifier PXD001163. RESULTS: 615 proteins were recovered, they included all male gamete proteins described thus far. Amongst them were the 11 enzymes of the glycolytic pathway. The hexose transporter was localized to the gamete plasma membrane and it was shown that microgamete motility can be suppressed effectively by inhibitors of this transporter and of the glycolytic pathway. CONCLUSIONS: This study describes the first whole-cell proteomic analysis of the malaria male gamete. It identifies glycolysis as the likely exclusive source of energy for flagellar beat, and provides new insights in original features of Plasmodium flagellar organization

    Pch2 Acts through Xrs2 and Tel1/ATM to Modulate Interhomolog Bias and Checkpoint Function during Meiosis

    Get PDF
    Proper segregation of chromosomes during meiosis requires the formation and repair of double-strand breaks (DSBs) to form crossovers. Repair is biased toward using the homolog as a substrate rather than the sister chromatid. Pch2 is a conserved member of the AAA+-ATPase family of proteins and is implicated in a wide range of meiosis-specific processes including the recombination checkpoint, maturation of the chromosome axis, crossover control, and synapsis. We demonstrate a role for Pch2 in promoting and regulating interhomolog bias and the meiotic recombination checkpoint in response to unprocessed DSBs through the activation of axial proteins Hop1 and Mek1 in budding yeast. We show that Pch2 physically interacts with the putative BRCT repeats in the N-terminal region of Xrs2, a member of the MRX complex that acts at sites of unprocessed DSBs. Pch2, Xrs2, and the ATM ortholog Tel1 function in the same pathway leading to the phosphorylation of Hop1, independent of Rad17 and the ATR ortholog Mec1, which respond to the presence of single-stranded DNA. An N-terminal deletion of Xrs2 recapitulates the pch2Δ phenotypes for signaling unresected breaks. We propose that interaction with Xrs2 may enable Pch2 to remodel chromosome structure adjacent to the site of a DSB and thereby promote accessibility of Hop1 to the Tel1 kinase. In addition, Xrs2, like Pch2, is required for checkpoint-mediated delay conferred by the failure to synapse chromosomes
    corecore